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Abstract

This paper investigates whether it is possible for a designer to learn how a deci-

sion maker learns from the information. The decision maker observes signals about

an unknown payoff-relevant state, learns about the state from the signals and then

takes an action at each time. A designer designs the payoff the decision maker

gets, observes the decision maker’s signals and actions, and then tries to learn how

this decision maker learns from the information. This paper investigates a start-

ing point of this problem: given the common knowledge that the decision maker is

Bayesian but the prior is unknown, is it possible for the designer to learn the deci-

sion maker’s prior? This paper studies the probability of the designer learning the

decision maker’s prior and characterises the optimal payoff structure that maximises

this probability.

1 Introduction

When a payoff-relevant state is unknown, a decision maker (DM) learns from information

about the state before making decisions. For example, before buying a product, the

consumers watch advertising and introduction of the product, search the internet for

reviews about the product, and then decide whether to buy or not. Investors read the

financial report and news of a company to check if the company is worth investing in and

then decide whether to invest or not. Chain restaurants do market research and use the

data from the market research to see whether it is profitable to open a new restaurant.

The DM collects information, processes information and learns from the information.
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How does a DM learn from the information? One of the canonical theories is that

the DM has some prior belief about the unknown state. If the DM receives some infor-

mation and signals about the unknown state, then, she updates her prior belief based on

the new observations. The process that the DM forms a prior belief and then updates

her belief based on new observations is referred to as ‘learning from the information’ in

this chapter. Mainstream economic theories impose Bayesian DM assumptions where

the DM updates the belief using Bayes rule given some prior. However, the psychology

and behavioural economic literature suggest that people process information systemati-

cally departure from using Bayes rule (see Tversky & Kahneman (1974), Rabin (1998)

and Camerer (1998)). Behavioural economists have investigated and developed theories

about alternative belief updating rules. Epstein et al. (2010) provides a non-Bayesian

updating rule to capture the underreaction and overreaction to signals. Rabin (1998)

analyses the bias in beliefs when the order of the signals matters in how people infer

future signals. Besides the theories about the non-Bayesian updating rules, there are

some ad hoc tests used to understand how a DM learn from the information. For exam-

ple, Angrisani et al. (2017) studies how people process information in a social learning

network. The literature infers that it is unclear how a DM learn from the information.

In addition, learning how people learn from the information requires further studies.

The question of interest is: By observing what a DM sees and what they do, is it

possible that a third party could learn how this DM learns from the information they

received? For example, consider the experimental economists designing an experiment

to learn how the experiment participant processes the information. If the designer sees

the information received by the participant and the actions taken by the participant,

then, is it possible for the designer to learn about the participant’s beliefs? Theoretically

speaking, answering this question provides a theoretical foundation for the experiments

that are interested in detecting how people learn from the information. In addition,

answering this question has applications in industry. Firms can benefit from learning

how their consumers react to the information they provide. They can design advertising

and free trials better to attract targeted consumers. Central banks can benefit from

knowing how the public processes the news they release. They then can do better

forward guidance in terms of the new monetary policy.

In this chapter, I investigate the question in the following situation. Suppose it is

common knowledge that the DM updates their beliefs using Bayes rule but the prior is

unknown, I investigate whether it is possible for the designer to learn the DM’s prior

belief by observing the signals she received and the actions she took. Learning the DM’s

prior can be considered a starting point for learning how the DM learns. Given that the
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DM updates beliefs using Bayes rule, if the state is binary, all the designer needs to learn

is one parameter. If the state is finite but not binary, the designer just needs to learn a

distribution with a finite number of parameters. This is the least demanding situation

in terms of what the designer needs to learn. If the designer cannot learn how the DM

learns in this situation, then, it is very likely that the designer is not able to learn in a

more demanding environment. It is hence considered a starting point.

Whether the designer can learn the DM’s prior depends on the variation in the DM’s

actions and the informativeness of the signals. The variation in the DM’s actions is

important. For example, if the DM always takes the same action regardless of the beliefs,

then, the designer can learn nothing about the DM. If the DM’s action is reporting the

beliefs directly, it is likely that the designer can learn how the decision maker learns

with sufficiently many observations. The informativeness of the signals about the state

matters as well. If the signals are very informative, the decision-maker learns the state

very fast. Then, there will not be too many variations in the DM’s actions eventually.

It is likely that the designer cannot learn anything after a certain point. If the signals

are not very informative, the DM’s beliefs fluctuate a lot. The fluctuation of the beliefs

then may induce variations in the actions. Then it is more likely that the designer can

learn how the DM learns.

Related literature This paper is related to the experimental economics papers about

detecting the bounded rationality of individuals. Angrisani et al. (2017) design the

experiment to detect how individuals to update beliefs in a social learning network. The

agents in their model act sequentially after observing statements from the neighbours

and a private signal about the state. The agents’ actions in their model are continuous.

This paper is different from Angrisani et al. (2017). This paper focuses on asking the

question of whether the experiment designer can learn how the agents update their

beliefs by observing their actions and the signals. The focus is not on how the individual

interprets the signals from different sources. Augenblick & Rabin (2018) examines the

time-inconsistency preference of individuals. Their paper focuses on the experiment

designer observing the actions to detect the form of the individual’s preferences. The

aim of their paper is different from this one. This paper is mainly about beliefs rather

than preferences.

Mathematically, this paper is using the idea of a sequential probability ratio test

by Wald (1945). The sequential probability ratio test considers the odds ratio as a

function of the probability of each observation and the number of observations. The

sequential probability ratio test is for hypothesis testing. The aim of the test is to
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decide which hypothesis is correct in the shortest time period, i.e. with the smallest

amount of observations. There are two thresholds: a lower one and a higher one. The

sequential probability ratio test ends if the odds ratio falls below the lower threshold or

jumps above the higher threshold. The stopping time of the test follows Wald’s identity.

It allows us to calculate the probability that the odds ratio hits the two thresholds. This

paper uses Wald’s identity to calculate the probability of the designer learning the prior.

2 The Model

2.1 Model Setup

There are two players: a designer and a decision maker (DM). Time t = 0, 1, 2, . . . is

discrete and potentially infinite. The state is drawn from the set Θ = {θ, θ′} at time

t = 0 and is constant over time. Both the designer and the DM are uninformed about

the state. The designer’s prior belief is denoted µ0 = Pr(θ) > 0 and the DM’s prior

belief is denoted p0 = Pr(θ) > 0. The DM’s prior belief is private information and is

referred to as the DM’s type. Let P denote the set of the DM’s type. I discuss two cases

in this chapter: P = {p0, p̄0} and P = (0, 1). The designer believes that p0 follows a

distribution Π. The DM observes a signal and then takes an action at each time t to

maximise her time-t utility. The designer designs the DM’s payoff function and observes

the DM’s actions. The designer’s objective is to learn the DM’s type.

The designer designs the payoff function U : A × Θ → R+ at t = 0. At each

time t > 0, the DM observes a signal st ∈ {1, 2, , . . . , S} = S and takes an action

αt ∈ A = {0, 1}. If the state is θ, the DM observes signal st = s with probability

Pr(st = s|θ) = as > 0 where ā := (as)s∈S is the distribution of the signals in state θ.

If the state is θ
′
, the DM observes signal st = s with probability Pr(st = s|θ) = bs > 0

where b̄ := (bs)s∈S is the distribution of the signals in state θ
′
. The signal structure

is exogenous. Let ht = (s0, s1, . . . , st−1) ∈ st denote the history of signals. The DM

observes ht and forms a posterior belief pt = Pr(θ|ht) using Bayes rule. The DM takes

an action αt ∈ A = {0, 1} at each time t to maximise her time t expected payoff. The

payoff at time t is not observed by the DM until the experiment ends.

The timing is as follows. At time t = 0, the designer designs the utility function

U . At time t > 0, the DM observes the signal st, updates her belief, and then takes an

action αt. The designer observes the action αt. If the designer learns the type of DM,

the experiment ends. If the designer does not learn the type of DM, the experiment

continues to the next period.
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Given the binary actions and binary states, instead of designing the utility function

U : A×Θ → R+, the designer’s action can be simplified to choosing a threshold

r :=
U
(
0, θ

′
)
− U

(
1, θ

′
)

U (1, θ)− U (0, θ) + U (0, θ′)− U (1, θ′)
∈ (0, 1)

such that it is optimal for the DM to take action αt = 1 if and only if pt > r.

2.2 An Example

The designer has two kinds of biased coins: A and B. The name of the coin is the ‘state’

in the model. Coin A comes up Heads with probability 2
3 and Tails with probability

1
3 . Coin B comes up Heads with probability 1

3 and Tails with probability 2
3 . These two

kinds of biased coins are in a non-transparent box. The composition of the coins inside

the box is unknown. At the beginning of the game, the DM draws a coin from the box.

Then, the DM tosses the coin and guesses which coin it is. Since the draw is random

and the composition of the coin is unknown, the state is unknown and the DM’s prior

belief is private.

The designer designs the DM’s payoff. The payoff function is announced before the

coin is drawn. An example of the payoff function is as follows. If the coin is A and the

DM guesses it correctly, then, the DM gets M . If the coin is A and the DM guesses it

wrong, then, she gets m. If the coin is B and the DM guesses it correctly, then, she gets

N . If the coin is B and the DM guesses it wrong, then, she gets n. The designer wants

to learn the DM’s prior by observing the coin toss results and the DM’s guesses.

The timing of the payment guarantees that the DM does not learn the state from the

payoff. If there is only one period, after the guess, the designer and the DM check the

name of the coin, and then the designer pays the DM accordingly. If there is more than

one period, the coin is tossed and the DM makes guesses at each time. The payment

is made at the end of the experiment. The experiment ends after a predetermined time

period T (if the time horizon is finite), after the designer learns the type of the DM (if

the time horizon is infinite), or continues forever if there is no learning. Since the state is

unknown to both the DM and the designer, the designer records the DM’s guess at each

time and calculates the payoffs at the end of the experiment when the state is revealed.

2.3 Discussion

I make the assumptions that the designer can design the DM’s payoffs and DM’s actions

are observable. These assumptions make it easier for the designer to learn the DM’s
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type. The purpose of this chapter is to check whether the designer can learn in this

environment. If the designer cannot learn in this case, then, it is even harder to learn

when actions are noisy or the utility function is exogenous.

In the example, the DM announces the ‘guess’ each time and the designer observes

this guess when it is announced. This is the case that the action is observable. It may

not always be the case that the action is observable. Sometimes, only the noisy version

of the action is observable. For example, suppose the DM cannot talk but has two coins,

A and B, in her pocket. After tossing the coin drawn from the box, the DM cannot

announce her guess but she can pick up the corresponding coin in her pocket. Then,

the designer can flip the coin picked by the DM, observes a signal of the DM’s guess

and then infers the DM’s guess, The observable action assumption makes it easier for

the designer to learn. During the experiment, what the designer observes are a series of

actions taken by the DM and a series of signals about the state. There is no extra level

of uncertainty compared to the noisy version of the actions. In this section, I consider

the case with observable actions to check if the designer can learn the type of the DM.

If the designer cannot learn the type of the DM in this case, it is highly possible that

the designer cannot learn when the observed actions are noisy.

In the example, the designer can choose the payoffs the DM gets. This makes it

easier for the designer to learn. Consider the case that the designer cannot choose the

payoff function in the coin example. Suppose that the DM gets 1 if she makes a correct

guess and 0 otherwise. Assume that the DM is risk neutral. Then the DM would guess

A if she believes that the coin is A with a probability of at least a half. Suppose that

the DM has the prior that the coin is A with probability 0.8, and if the coin comes up

heads more than tails, it is likely that the DM’s belief is always bigger than a half. The

designer then keeps observing the A guesses. The designer may not learn whether the

DM has a prior 0.8 or the DM has other priors bigger than 0.8. If the DM with prior 0.8

guesses A all the time, the DM who has a prior bigger than 0.8 would guess A as well.

The designer then cannot learn. However if the designer can choose the payoff function,

the designer has the ability to induce actions that are favourable in terms of learning.

Suppose that the designer somehow believes that the DM has the prior that the coin

is A with a high probability. The DM believes that the coin is A with a probability of

0.8. Then, the designer may learn the prior of the DM if the designer chooses the payoff

function as follows. If the coin is A and the DM guesses it correctly, the DM gets 1;

if the coin is B and the DM guesses it correctly, the DM gets 3; if the guess is wrong,

the DM gets 0. Given this payoff function, the DM will guess B if she believes that the

probability that the coin is A is smaller than 3
4 . The payoff of guessing B correctly is big

6



enough so that it is worth taking the risk. Consider the action of the DM who believes

that the coin is A with a probability of 0.8. Before the first signal, the DM guesses A

because the prior is 0.8. After the first signal, if the signal is tails, the DM believes that

the coin is A with probability 2
3 and then guesses B. Then, the designer can back up

the prior belief of the DM. The designer can back up that the prior of the DM is in the

range (34 ,
6
7).

3 Analysis

This section analyses the model. I first show that observing a switch of action helps the

designer to learn the DM’s prior. Then, I show that when there are two types of the DM,

that is, P = {p0, p̄0}, the designer learns the DM’s type immediately. Then, I show that

when P = (0, 1), the designer does not learn the DM’s type for certain. I characterise

the designer’s optimal payoff function design that maximises the probability of learning

in this case.

3.1 Switch of Actions

In this section, I show that observing a switch of action helps the designer to learn the

prior of the DM. Without imposing assumptions on P , I compute the probability of

observing a switch of action conditional on the state θ and θ′ given a threshold r.

Although the time in this model is infinite, the real time for the designer to learn the

type of the DM is actually finite. This is because a Bayesian DM learns the state after

observing sufficiently many signals. Therefore, given any type p0 ∈ (0, 1), the sequences

of the DM’s actions eventually converge. The sequence of the DM’s actions converges

to 1 if the state is θ and converges to 0 if the state is θ′. As a result, the designer must

learn the DM’s prior faster than the DM learns the state.

In order to learn the type of the DM, there must be variations in the different types

of DMs’ actions. The designer learns the type of the DM if the sequences of actions are

different for different types of the DM after they receive the same sequence of the signals.

Consider the case that there are two types of the DM. After receiving the same sequence

of signals, if one type of the DM takes a sequence of actions (0, 0, 0, 0, . . . , 0, 0, . . . ) and

the other type of the DM takes a sequence of actions (0, 0, 1, 1, . . . , 0, 0, . . . ), the designer

can learn the type of the DM. Consider the case that there are more than two types of

the DM. The designer learns the type of the DM if different types of the DM switch their

actions and first switch their actions at different time after observing the same sequence
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of signals.

Suppose the designer chooses a threshold r. The DM takes action 1 if the belief

about the state being θ is greater than or equal to r. Consider the DM has a prior p0

smaller than r. The DM first takes action 0. After receiving a sequence of signals, the

DM first switches the action from 0 to 1 if the belief about the state goes from below

the threshold r to above the threshold r. If the state is θ, this switch of actions happens

with probability 1 as the sequence of actions converges.

If the DM has the prior p0 larger than r. The DM first takes action 1. The designer

can observe a switch of action if the DM’s belief about the state being θ falls below the

threshold r. Since the DM is Bayesian the belief converges to 1 if the state is θ, the

designer may or may not observe a switch of action. The probability of the DM’s belief

falling below r is positive but not 1. This probability can be derived given the value of

r using Wald’s Fundamental Identity. The probability of observing a switch of action is

summarized in the lemma below.

Let v∗ < 0 satisfy
∑

s∈S as(
as
bs
)v

∗
= 1, let u∗ > 0 satisfy

∑
s∈S bs(

as
bs
)u

∗
= 1. and let

k := ln r
1−r − ln p0

1−p0
. Proposition 1 characterises the probability of observing a switch

of action in state θ and θ
′
given the type of the DM p0 and the threshold r.

Proposition 1. Assume that θ is the underlying state and p0 is the type of the DM.

If the designer chooses r > p0, the switch of actions is observed w.p. 1.

If the designer chooses r < p0, the switch of actions is observed w.p. 1
ev∗k

.

If the designer chooses r = p0, the switch of actions is observed w.p. 1
ev

∗η where

η = limr→p0 k.

Assume that θ′ is the underlying state and p0 is the type of the DM.

If the designer chooses r < p0, the switch of actions is observed w.p. 1.

If the designer chooses r > p0, the switch of actions is observed w.p. 1
eu∗k

.

If the designer chooses r = p0, the switch of actions is observed w.p. 1
eu∗η

where

η = limr→p0 k.

3.1.1 A Special Case: Binary Signals

The probability of observing a switch of action requires solving for v∗ or u∗ numerically.

It is hard to compute the exact values when there are many signals. In this section, I

consider a special binary-signal case.

There are two signals S = {1, 2} with distributions (a, 1−a) in state θ and (1−a, a)
in state θ′. I assume a > 0.5 so that it is more likely to receive signal 1 in state θ and

more likely to receive signal 2 in state θ′. When a is very close to a half, i.e. when the
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signal is very uninformative, the belief of the DM takes very small steps after receiving

one more signal. In the limit, it is like the case with continuous times. The probability

of learning is easier to compute given this signal structure.

Proposition 2 characterises the probability of observing a switch of action when

S = {1, 2}. Let B :=
ln r

1−r
−ln

p0
1−p0

ln a
1−a

.

Proposition 2. Assume that θ is the underlying state and p0 is the type of the DM.

If the designer chooses r > p0, a switch of actions is observed with probability 1.

If the designer chooses r < p0, a switch of actions is observed with probability

(1−a
a )−B.

If the designer chooses r = p0, a switch of actions is observed with probability 1−a
a .

Assume that θ′ is the underlying state and p0 is the type of the DM.

If the designer chooses r ≤ p0, a switch of actions is observed with probability 1.

If the designer chooses r > p0, a switch of actions is observed with probability (1−a
a )B.

In the following sections, I discuss the designer’s optimal choice of the threshold r

and the probability of learning the DM’s type when the signals are binary.

3.2 Two types of DM

When there are two types of DM, the designer can learn the type of the DM immediately.

Theorem 1. When P = {p0, p̄0}, the designer can learn the type of the DM immediately

by choosing r∗ ∈
(
p0, p̄0

]
.

By choosing the threshold r∗, the DM with prior p0 takes action 1 and the DM with

prior p̄0 takes action 0. The designer learns the type of the DM immediately.

3.3 Continuous Types

In this section, I consider the case when P = (0, 1) and when Π is uniform. This case

describes the situation that the designer knows nothing about the DM’s prior. The

designer does not know the potential prior the DM may have and the designer does not

know which prior is more likely. The continuously uniformly distributed prior can be

considered as a conservative assumption the designer has about the DM. In this case,

the designer does not learn the type of the DM with probability one. The objective

of the designer is to maximise the probability of learning the prior. There are three

factors that affect the choices of the threshold r when the designer wants to maximise

the probability of learning the prior of the DM. The three factors are the designer’s
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prior belief about the state, the designer’s prior belief about the type of the DM, and

the distances between the priors of the DM.

The designer’s prior belief about the state determines whether the threshold r is

closer to 0 or closer to 1. If the designer believes that the state is more likely to be θ,

the designer believes that it is more likely that the beliefs of the DM are going up to 1

regardless of the types of the DM. Choosing the threshold r closer to 1 can maximise

the probability of learning the type of the DM in the state θ. However, if the designer

believes that the state is more likely to be θ′, the designer believes that it is more likely

that the beliefs of the DM are going down to 0 regardless of the types of the DM.

Choosing the threshold r closer to 0 can maximise the probability of learning the type

of the DM in the state θ′.

The designer’s prior belief about the type of the DM determines whether the designer

wants to choose the threshold r closer to a certain prior. The closer the threshold r is

to a range of certain priors, the higher the probability is for the designer to learn those

priors when the state is unknown.

The distances between the priors matter. Let the lowest prior the DM can have is

p0 and the highest prior the DM can have is p̄0. If the distribution of the priors has a

smaller variance, it is possible that the designer is more willing to choose the threshold

r ∈ [p0, p̄0]. If the distribution of the prior has a larger variance, it is possible that the

designer is more willing to choose the threshold to be p0 or p̄0.

The following lemma characterises the upper and lower bound of the optimal thresh-

old r given P and the signal structure.

Lemma 1. When P = (p0, p̄0), the optimal threshold r∗ satisfies the condition that

ln
p0

1− p0
− ln

a

1− a
< ln

r

1− r
< ln

a

1− a
+ ln

p̄0
1− p̄0

.

This is a direct result from the discussion above. If the type of the DM p0 is in the

interval [p0, p̄0], the designer never chooses the threshold r such that
ln r

1−r
−ln

p̄0
1−p̄0

ln a
1−a

> 1,

and the designer never chooses the threshold r such that
ln r

1−r
−ln

p0
1−p0

ln a
1−a

< −1.

Next, I characterise the condition that the optimal threshold r∗ satisfies. I show that

the optimal threshold that maximises the probability of learning the prior is a function

of µ0 and it is increasing in µ0. If the designer believes that the state is more likely to be

θ, the designer will choose r∗ closer to 1. It will allow the designer to learn more priors

in state θ, but learn less in state θ′. If the designer believes that the state is more likely

to be θ′,the designer will choose the r∗ closer to 0. It will allow the designer to learn
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more priors in state θ′, but learn less in state θ.

Proposition 3. The optimal choice of the threshold r∗ that maximises the probability

of learning the prior satisfies

(r∗)2

(1− r∗)2
ln r∗ + 1− r∗

ln(1− r∗) + r∗
=

1− µ0
µ0

.

The optimal threshold r∗ increases in µ0.

4 Extensions

4.1 Finite Periods of Learning

Previous sections discuss the cases that the time horizon is infinite. I focus on discussing

the probability of learning in the long run. In this section, I consider the case that the

time t = 0, 1, . . . , T is finite. The finite-time assumption is more relevant to real-life

applications. For experimental economists who design experiments to detect the belief

of the experiment candidates, the experiments cannot last forever. For firms that are

doing trials to understand their customers, they cannot do an infinite number of trials

Proposition 4 characterises the probability of observing a switch of action in state

θ and θ
′
given the type of the DM, the threshold r and the final time period of the

experiment T . Before presenting the proposition, I define ΦB(s), ΨB(s), ΞB(s) and

ΩB(s) functions where

ΦB(s) := (
1− (1− 4a(1− a)s2)

1
2

2(1− a)s
)B,

ΨB(s) := (
1− (1− 4a(1− a)s2)

1
2

2as
)−B,

ΞB(s) := (
1− (1− 4a(1− a)s2)

1
2

2as
)B,

and

ΩB(s) := (
1− (1− 4a(1− a)s2)

1
2

2(1− a)s
)−B.
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Let ϕB(τ) =
Φ

(τ)
B (0)
τ ! , ψB(τ) =

Ψ
(τ)
B (0)
τ ! , ξB(τ) =

Ξ
(τ)
B (0)
τ ! , and ωB(τ) =

Ω
(τ)
B (0)
τ ! where f (τ)(0)

is the τ -th derivative of the function f evaluated at 0.

Proposition 4. Assume that θ is the underlying state and p0 is the type of the DM.

If the designer sets r > p0, the designer learns the type of the DM with probability∑T
τ=1 ϕB(τ). If the designer sets r < p0, the designer learns the type of the DM with

probability
∑T

τ=1 ψB(τ).

Assume that θ′ is the underlying state and p0 is the type of the DM. If the designer

sets r > p0, the designer learns the type of the DM with probability
∑T

τ=1 ξB(τ). If the

designer sets r < p0, the designer learns the type of the DM with probability
∑T

τ=1 ωB(τ).

5 Conclusion

This chapter investigates whether a designer can learn how a DM learns an underlying

state by observing some public signals and the DM’s actions. This chapter analyses the

cases in which the prior of the DM is unknown. The objective of the designer is to learn

the DM’s prior. This chapter shows that the key to learning the DM’s prior is being

able to observe a switch in the DM’s action. If the designer can design the DM’s payoffs,

then, there is a positive probability that the designer can learn the DM’s prior. This

chapter also characterises conditions for the optimal payoff design that maximises this

probability.
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A Proof of Proposition 1

First, consider the DM’s belief. The DM forms the belief using the Bayes rule. Define

the log odds ratio Λt := ln( pt
1−pt

). The following part shows that Λt follows a random

walk. The odds ratio is

pt+1

1− pt+1
=

pt
1− pt

Pr(st|θ)
Pr(st|θ′)

=
p0

1− p0

t∏
τ=0

Pr(sτ |θ)
Pr(sτ |θ′)

=
p0

1− p0

∏
s∈S

(
as
bs
)t̂s

where t̂s is the number of s signals before time t+1. Taking the logarithms of the odds

ratio, we have

ln
pt+1

1− pt+1
= ln

pt
1− pt

+ ln
ast
bst

= ln
p0

1− p0
+

t∑
τ=0

ln
asτ
bsτ

Thus

Λt+1 = Λt + ln
ast
bst

(1)

The log odds ratio follows a random walk with steps ln
ast
bst

. If the underlying state

is θ, the random walk takes steps with the probability determined by the probability

distribution a.

Now consider the DM’s action. The DM takes action αt = 1 if pt ≥ r and αt = 0

otherwise. Therefore, the DM takes action αt = 1 if Λt ≥ ln r
1−r . If the DM is observed

to switch action from 0 to 1 in period t, then we have Λt ≈ ln r
1−r . Thus,

ln
p0

1− p0
+

t∑
τ=0

ln
asτ
bsτ

≈ ln
r

1− r
.
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Therefore, observing a switch of action is equivalent to observing the type of the DM.

Next step is to characterise the probability of observing a switch of action given

the choice of r. Let xt := ln
ast
bst

. Conditional on the state θ, x1, x2, . . . are identically

and independently distributed random variables. Let yt = x1 + · · · + xt. The sequence

y = {yτ : τ > 0} is a random walk starting at the origin. Let k := ln r
1−r − ln p0

1−p0
. The

probability of observing a switch of action is equal to the probability that the random

walk y hits the value k.

If k > 0, the probability that y hits the value k is 1. Conditional on θ, we have

Eθ[Λt+1 | Λt] > Λt. Therefore, Λt is a submartingale. According to the Martingale

convergence theorem, if the state is θ, Λt → ∞ almost surely. If the state is θ′, Λt → −∞
almost surely.

Since the random walk y satisfies

yt = Λt+1 − ln
p0

1− p0
,

if the state is θ, the random walk y hits the value k > 0 with probability 1.

Now consider the situation that k < 0. Let A > 0. Define a stopping time τ to

be the first time the random walk y exists the interval [k,A]. The stopping time τ is

finite with probability 1 as the the random walk y tends to infinity. According to Wald’s

Identity, the stopping time τ satisfies

1 = E[
evyτ

(
∑

s as(
as
bs
)v)τ

] for ∀v ̸= 0 s.t.
∑
s

as(
as
bs
)v ≥ 1.

Choose v∗ < 0 such that
∑

s as(
as
bs
)v

∗
= 1, then,

1 = E[ev
∗yτ ].

Let τA and τk be the two stopping times that yτ hits A and yτ hits k, then

1 ≈ Pr(yτ = A)ev
∗A + Pr(yτ = k)ev

∗k.

Notice that this is an approximation because when yt hits k, it does not exactly equal

k. The equality holds with an equal sign if either the steps the random walk takes are

infinitely small (the continuous time case) or the random walk takes steps up and down

of the equal sizes. Next section will discuss the case that the random walk takes steps

up and down of the equal sizes. Use the fact that Pr(yτ = k) = 1− Pr(yτ = A) we can
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get that

Pr(yτ = k) ≈ 1− ev
∗A

ev∗k − ev∗A
.

Let A→ ∞, we have

Pr(yτ = k) → 1

ev∗k
.

When the state is θ
′
, the proof follows the same approach.

If k < 0, the random walk y hits the value k with probability 1. From the proof

for lemma 1, conditional on θ′, Equation (1) implies that Eθ[Λt+1 | Λt] < Λt. Therefore,

−Λt is a submartingale. If the state is θ′, Λt → −∞ almost surely. The random walk y

hits the value k < 0 with probability 1.

Consider the case that k > 0. Let A < 0. Define the stopping time τ to be the

first time the random walk y exits the interval [A, k]. The stopping time τ is finite with

probability 1. According to Wald’s identity, the stopping time satisfies

1 = E[
euyτ

(
∑

s bs(
as
bs
)u)τ

] for ∀u ̸= 0 s.t.
∑
s

bs(
as
bs
)u ≥ 1.

Choose u∗ > 0 such that
∑

s as(
as
bs
)u

∗
= 1. Follow the same steps as in the proof for

lemma 1. We have

Pr(yτ = k) → 1

eu∗k
.

B Proof of Proposition 2

Consider the random walk y defined previously where yt = x1+ · · ·+xt. Given the signal

structure characterised above, if st = 1, we have xt = ln a
1−a , and if st = 2, we have

xt = ln 1−a
a . The random walk y now starts at the origin and takes steps up and down by

equal amounts ln a
1−a . If the threshold is r, let B =

ln r
1−r

−ln
p0

1−p0
ln a

1−a
be the corresponding

steps the random walk y takes to hit the value ln r
1−r − ln a

1−a . The expressions ‘the

random walk y hits the value ln r
1−r − ln a

1−a ’ and the ‘random walk y hits the step B’

are the same.

We now have a random walk y starting at the origin taking steps up and down

by equal amounts ln a
1−a . If the state is θ, the random walk y taking steps up with

probability a and steps down with probability 1−a. If r > p0, B > 0. The random walk

y hits the step B with probability 1. If r < p0, B < 0. The random walk y hits the step

B with probability (1−a
a )−B.

If the state is θ′, the random walk y taking steps up with probability 1 − a and
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steps down with probability a. If r > p0, B > 0. The random walk y hits the step B

with probability (1−a
a )B. If r < p0, B < 0. The random walk y hits the step B with

probability 1.

C Proof of Proposition 3

Let B =
ln r

1−r
−ln

p0
1−p0

ln a
1−a

be the steps. If the state is θ, for p0 < r, the designer learns

the type with probability 1. For p0 > r, the designer learns the type with probability

(1−a
a )−B. If the state is θ′, for p0 < r, the designer learns the type with probability

(1−a
a )B. For p0 > r, the designer learns the type with probability 1. The probability of

learning is

Pr(Learning) = µ0(

∫ r

0
1dp0 +

∫ 1

r
(
1− a

a
)−Bdp0) + (1− µ0)(

∫ r

0
(
1− a

a
)Bdp0 +

∫ 1

r
1dp0)

= µ0(r +
r

1− r
(−1− ln r + r)) + (1− µ0)(

1− r

r
(−r − ln(1− r)) + 1− r)

Take the first order derivative with respect to r,

dPr(Learning)

dr
= µ0(

d

dr

∫ r

0
1dp0 +

d

dr

∫ 1

r
(
1− a

a
)−Bdp0)

+ (1− µ0)(
d

dr

∫ r

0
(
1− a

a
)Bdp0 +

d

dr

∫ 1

r
1dp0)

= ln
1− a

a

dB

dr
(−µ0

∫ 1

r
(
1− a

a
)−Bdp0 + (1− µ0)

∫ r

0
(
1− a

a
)Bdp0)

= ln
1− a

a
(ln

a

1− a
)−1 1

r(1− r)
[−µ0

r

1− r
(r − 1− ln r)

− (1− µ0)
1− r

r
(r + ln(1− r))]

= µ0
1

(1− r)2
(r − 1− ln r) + (1− µ0)

1

r2
(r + ln(1− r))

Take the second order derivative with respect to r,

d2 Pr(Learning)

dr2
= −µ0

−r2 + 2r ln r + 1

r(1− r)3
− (1− µ0)

2 ln(1− r)− (r−2)r
1−r

r3

< 0

The probability of learning is concave in r ∈ (0, 1).

Therefore, there exists a r∗ ∈ (0, 1) such that the probability of learning is maximised.
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Next, show r∗ is increasing in µ0. Take the first order condition, we have

µ0
1

(1− r∗)2
(r∗ − 1− ln r∗) + (1− µ0)

1

(r∗)2
(r∗ + ln(1− r∗)) = 0

Then we have

(1− µ0)
1

(r∗)2
(r∗ + ln(1− r∗)) = µ0

1

(1− r∗)2
(ln r∗ + 1− r∗)

Therefore,

µ0
1

(1−r∗)2 (ln r
∗ + 1− r∗)

(1− µ0)
1

(r∗)2 (r
∗ + ln(1− r∗))

= 1

Thus

(r∗)2

(1− r∗)2
ln r∗ + 1− r∗

r∗ + ln(1− r∗)
=

1− µ0
µ0

We can write r∗ as a function of µ0. The left hand side is decreasing in r∗, the right

hand side is decreasing in µ0. Therefore r
∗ is increasing in µ0.

D Proof of Proposition 4

Consider the random walk y defined in Proposition 1. Let B =
ln r

1−r
−ln

p0
1−p0

ln a
1−a

. Let

ϕB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step when

B > 0 with generating function

ΦB(s) =
∞∑
τ=1

ϕB(τ)s
n = (

1− (1− 4a(1− a)s2)
1
2

2(1− a)s
)B. (2)

Let

ψB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)
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be the probability that the random walk y first hits the step B at the τ -th step when

B < 0 with generating function

ΨB(s) =
∞∑
τ=1

ψB(τ)s
n = (

1− (1− 4a(1− a)s2)
1
2

2as
)−B. (3)

We have ϕB(τ) =
Φ

(τ)
B (0)
τ ! and ψB(τ) =

Ψ
(τ)
B (0)
τ ! where f (τ)(0) is the τ -th derivative of the

function f evaluated at 0.

Assume that θ is the underlying state. The random walk y takes steps up with

probability a and steps down with probability 1 − a. The generating functions can be

written as (2) and (3) 1. Then summing ϕB and ψB over τ from τ = 1 to τ = T gives

us the probability of hitting the step B within T periods.

Similar results hold for assuming θ′ being the underlying state. Let

ξB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step when

B > 0 with generating function

ΞB(s) =
∞∑
τ=1

ξB(τ)s
n = (

1− (1− 4a(1− a)s2)
1
2

2as
)B. (4)

Let

ωB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step when

B < 0 with generating function

ΩB(s) =
∞∑
τ=1

ωB(τ)s
n = (

1− (1− 4a(1− a)s2)
1
2

2(1− a)s
)−B. (5)

Assume that θ′ is the underlying state. The random walk y takes steps up with

probability 1 − a and steps down with probability a. The generating functions can be

written as (4) and (5). Then summing ξB and ωB over τ from τ = 1 to τ = T gives us

the probability of hitting the step B within T periods.

1See Grimmett & Stirzaker (2001)
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