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Abstract

This paper studies how time risk attitude and patience level affect an agent’s optimal choice

of a sequence of the pooled tests within a dynamic single-agent’s model. To disentangle the

effects of time risk attitude and patient level, I consider a generalised expected discounted

utility function. I show that when the agent’s prior belief is uniform and the preference is

time-consistent, only Linear Search and Binary Search can be optimal. All other sequences of

the tests are suboptimal. Whether a sequence of linear searches or binary searches is optimal

depends on the tradeoff between the time risk attitude and the patience level.

Keywords: time risk, time preferences, search

JEL Codes: D81, D83, D91

1 Introduction

Pooled testing is a method combining the same type of specimen from several people and conducting

one laboratory test on the combined pool of specimens to detect virus. This method is used to

screen SARS-CoV-2 (the virus that causes COVID-19) infections in the community. If a pooled

test result is negative then all the specimens can be presumed negative with the single test. If

it is positive, each of the specimens in the pool will need to be tested individually to determine

which specimens are positive. Suppose there are sixteen specimens waiting to be tested and one of

them is positive. There are multiple ways to conduct the tests in order to search for the positive

specimen. I will call it Binary Search if the pooled testing with a pool size of eight (that is, half of

the specimens) is used and Linear Search if the specimens are tested individually.1

When people only have access to binary signals, a single round of search normally is not suffi-

cient. Learning the truth takes time. Learning immediately is possible but relies on luck. In the

∗PhD student, Department of Economics, University College London. Address: Drayton House, 30 Gordon Street,
London, WC1H 0AX. Email: guo.bai.15@ucl.ac.uk. I am grateful to Martin Cripps, Deniz Kattwinkel, Konrad
Mierendorff for supervision and support. I would also like to thank Antonio Cabrales, Gherardo Caracciolo, David
Dillenberger, Amir Habibi and Nikita Roketskiy for helpful comments.

1Linear Search and Binary Search are standard terminologies in Computer Science literature.
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example, the laboratory tests only deliver positive or negative results. To find the positive speci-

men, after a pooled test with a pool size larger than one, follow-up tests are certainly needed. A

test with the pool size of one could find the positive specimen immediately only if it coincidentally

tests the positive specimen. In most circumstances, more than one test is needed. I refer to a

sequence of tests the test protocol.

Any sensible test protocol allows the learner to find the positive specimen. The main difference

between test protocols is in terms of the riskiness involved. That is, how and when the positive

specimen is found. The test protocol consisting a sequence of linear searches allows the learner

to learn immediately, but it is risky and can be slow. When this linear search protocol is used,

the specimens are tested individually and sequentially. The positive specimen can be found with a

minimum of one and a maximum of fifteen tests. The test protocol consisting a sequence of binary

searches is faster and safer, but it is impossible to learn immediately. When this binary search

protocol is used, the positive specimen can be found for certain after four tests.2 The possibility of

learning immediately induced by the linear search protocol could be useful in an inpatient clinical

setting where isolating the positive case immediately can minimise the risk of hospital transmission.

The guaranteed learning after a fixed number of tests can be beneficial when the test kits have to

be pre-ordered or when the result releasing date has to be announced in advance.

The main purpose of this paper is to understand the factors that affect the learner’s choice of

the test protocols. The learner will learn the truth eventually and the question of interest is how

the learner acquires pieces of information to learn the truth over time. Given the structure of the

tests, some test protocols allow the learner to acquire information and learn the truth in a safe

and steady way, while some test protocols surprise the learner with each piece of information which

allows the learner to learn immediately. The learner faces the tradeoff between possibly learning

today but more likely nothing and no learning today but learning for certain in the near future.

The learner’s preferences, in particular, the patience level and her time risk attitude are the

key factors that determine the choices of the test protocols. If a learner is impatient, then, she

appreciates the test protocols that allows her to learn today. The time risk attitude is the learner’s

risk attitude towards the potential uncertain learning time. To understand the time risk attitude,

suppose the learner can choose between two ‘lotteries’. Lottery one is a test protocol that allows

her to learn today or the day after tomorrow with equal probabilities and lottery two allows her to

learn tomorrow for certain.3 If learning the truth gives the learner a monetary payment of unity,

then, these two lotteries generate the same expected payment. The difference between the two

lotteries is in terms of the risk involved. Lottery one is riskier as the learner may learn the truth

today or the day after tomorrow while lottery two is safe. Given that both lotteries generate the

same expected payment, a learner is time risk averse if she prefers lottery two and is time risk

loving if she prefers lottery one. A test protocol with different pool sizes induces a ‘lottery’ on

2The first pooled testing has a pool size of eight. Eight random specimens will be tested together in one pooled
test. If the result is positive, four random specimens from these eight specimens will be tested again in the second
pooled test. If the result is negative, the second pooled testing will be conducted on the untested specimens in the
first round. The first pooled test eliminates eight negative specimens, the second pooled test eliminates four negative
specimens, the third test eliminates two and the fourth test pins down the positive specimen.

3In my model, the learner never chooses between these two lotteries because of the structure of the tests. These
two lotteries are just for illustration purposes
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learning time. A time risk averse learner would appreciate more a test protocol that allows her to

learn at some time for certain.

To model both time risk attitude and the patience level, the standard lifetime utility with

exponential discounting is not sufficient. It automatically describes a time risk loving preference

whenever the discount factor is smaller than one. This can be seen by evaluating the lifetime utility

associated with the two lotteries introduced earlier. Suppose learning the truth gives the learner

a monetary payment of unity and the learner has a discount factor δ ∈ (0, 1). Then, the utility

associated with lottery one is .5 + .5δ2 and the utility associated with lottery two is δ. The utility

from lottery one is always greater than that from lottery two if δ is between zero and one. In

other words, the lifetime utility with exponential discounting implicitly describes a time risk loving

preference. This time risk loving attitude is a side product from assuming exponential discounting.

Because of this, the standard utility function with exponential discounting does not allow us to

isolate the effect of the time risk attitude and the patience level on the learner’s optimal choice.

To disentangle the effects of the time risk attitude and the patience level, I discuss the main

tradeoff between learning safe and possibly learning today with a single-agent model where the

agent’s utility is modelled by a generalised discounted utility function. This utility function in-

troduced in Dejarnette et al. (2018) allows for different time risk attitudes as well as the patience

levels. The agent’s goal is to learn the true value of a parameter, which is drawn from a finite

parameter set. The agent can learn the true value of a parameter by doing a sequence of tests. At

each time, the agent can choose any number of elements from the parameter set and then conduct

a single test to check if the true value of the parameter is among the elements she has chosen. The

test result is binary and truthful. Given the true value of the parameter and the elements chosen,

the agent receives a positive or negative test result. The positive result indicates that the true value

of the parameter is among one of the elements she has chosen while the negative result indicates the

opposite. The test result cannot indicate which element is the true value of the parameter unless

the agent only picks up one element.

1.1 Related Literature

This paper is closely related to Zhong (2019). Zhong (2019) discusses a general dynamic information

acquisition framework where the agent can choose any information structure subject to a flow cost

constraint at each time. Zhong (2019) shows that when the agent is an expected utility maximiser

who discounts the future payoffs exponentially, the Poisson signal is the optimal signal structure.

This is because the Poisson signal generates the learning time with the highest variance compared

to other signal structures. Since the agent discounts the future payoffs exponentially, she has the

risk-loving time preference, and hence prefers the signal structure that induces the high variance

of learning time. The other paper Zhong (2017) explicitly discusses the relationship between the

optimal information acquisition and the agent’s time preference. Zhong (2017) shows that subject

to a flow cost constraint, any information structure induces the same expected learning time,

and Poisson signal induces the largest variance. The agent with risk-loving time preference hence

prefers Poisson signal. I focus on comparing how agent obtains information when she has different

preferences given a specific class of information structures, while Zhong’s papers focus on discussing
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the agent’s optimal information choices in a general framework.

The signal structure in this paper tells the agent the learning direction. It can be imagined as

the indicator at the intersection of two roads that tells the agent which direction to go in order

to find the target. This shares some similar features as in Callander (2011). In Callander (2011),

the agent wants to learn about a mapping from the choices to the outcomes. The mapping is

modelled as a realised Brownian motion, where the agent knows the parameters that characterise

the Brownian motion, but does not know its realisation. In order to learn about the realised

Brownian motion, the agent can observe the alternative and outcome pairs that has been chosen by

his predecessors and then choose an alternative to learn its outcome. Because of the property of the

Brownian motion, when the agent observes the alternative and outcome pairs of his predecessors, if

the previous outcomes are not of satisfaction, the agent learns the direction to search for the next

alternative. This has the similar features as the signal structure in my paper, but it is different. In

Callander (2011), when the agent chooses an alternative, the agent learns the outcome associated

with that alternative. However, in my paper, the signal itself does not allow the agent to learn

the unknown parameter directly. The signal only serves as an indicator that tells the agent the

learning direction. Learning happens when there is only one candidate left towards that direction.

Learning can be considered as indirect in this sense.

This paper is related to the literature that discusses the preferences on time lotteries. This is

because the final payoff associated with learning can be considered as a time lottery. Given a search

method, the agent faces a time lottery that gives him a payoff of one at a random time. Dillenberger

et al. (2018) and Dejarnette et al. (2018) discuss the preferences on time lotteries. One of the ideas

in those papers is that the commonly used expected utility with exponential discounting describes a

risk-loving time preference. In order to characterise other time risk attitude, a generalised expected

utility should be considered. My paper can be considered as an application of the generalised

expected utility to the learning and searching problem.

This paper is also related to the literature that discusses the timing of resolution of uncertainty.

If the agent always uses Binary Search, then the uncertainty about the timing of learning is resolved,

and hence it can be regarded as an early resolution of uncertainty. This can be shown from the

example in the introduction. If the employer always uses Binary Search, she knows that she will

learn the type of the employee at the second time period. However, if the agent always uses Linear

Search, then the timing of learning the unknown remains uncertain, and it thus can be regarded

as a late resolution of uncertainty. There is a group of literature discussing the preferences on

early and late resolution of uncertainty, including Epstein & Zin (1989), Kreps & Porteus (1978),

Dillenberger (2010) and Palacios-Huerta (1999). This paper can be considered as an application of

the preferences on resolution of uncertainty to the learning and searching problem.

The last group of the literature is the computer science literature on Linear and Binary Search.

In computer science, Linear Search and Binary Search are algorithms to find the position of a target

value. The details of these algorithms can be found in Knuth (1998). The recent computer science

papers including Kumari (2012), Mehta et al. (2015), and Rahim et al. (2017) compare the Linear

Search and Binary Search algorithms in different situations. While the computer science literature

focuses on comparing the speed and the complexity of the search algorithms, this paper focuses
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on discussing how people’s time preferences affect their optimal choices of the search algorithms.

Without discussing which search algorithm allows the agent to learn faster, this paper discusses

how agent’s preferences, in particular, agent’s patient level and the risk attitude, affect their choice

of the search algorithms.

2 The model

This section first introduces the model setup and then discusses the assumptions of the model.

2.1 Setup

There is a single decision-maker in this model. I call her the agent. The agent wants to learn the

true value of a parameter θ ∈ Θ, where Θ is finite with the cardinality N̄ . I assume that the set

Θ is sorted such that θ1 < θ2 < · · · < θN̄ . The parameter θ is drawn from a distribution F with

the probability mass function f at the beginning and it is fixed over time. Time t = 0, 1, . . . , T is

discrete and finite. The final period T is greater than N̄ − 2. The agent’s action at each time t is

to choose an element rt ∈ Θ to test.

The test at time t has two outcomes: pass or fail. The element chosen fails the test if it is

greater than the true value, and it passes otherwise. By choosing the test at time t, the agent

effectively chooses the information structure as described below. The information structure at each

time t consists of a binary signal st ∈ {0, 1} and a probability distribution over the signals. The 0

signal is the fail signal, while the 1 signal is the pass signal. Conditional on the true value of the

parameter and the test chosen, the probabilities of receiving the signals are

Pr(st = 0 | θ < rt) = Pr(st = 1 | θ ≥ rt) = 1.

A pair (rt, st) is the agent’s action and the signal received at time t. The agent remembers

her past actions and the past signals received. Let rt = {r0, r1, . . . , rt−1} be the sequence of the

past actions, and let st = {s0, s1, . . . , st−1} be the sequence of the past signals. At the beginning

of time t, It = {rt, st} denotes the history up to that point. The set of histories is denoted by

I =
⋃

t=1,2,...,T It∪∅. The strategy of the agent is given by a mapping R : I → Θ from the histories

to the test choices.

The agent has the prior belief f0 =
(
f0(θ)

)
θ∈Θ with f0(θ) ∈ (0, 1) for ∀θ ∈ Θ. At the start of

time t, the agent has the belief ft. After choosing the action rt, the agent receives the signal st and

updates the belief to ft+1 using Bayes rule. I assume the agent has a uniform prior belief. That is

f0(θ) =
1
N̄

for ∀θ ∈ Θ.

At each time t, the agent either learns or fails to learn the true value of the parameter. If she

learns the true value of the parameter at time t, then she gets a reward xt = x > 0, and the game

ends. If she fails to learn the true value of the parameter at time t, she gets xt = 0 and the game

enters time t+ 1. Let u : R → R+ ∪ {0} be the utility function that maps from the ex-post reward

to the set of positive real numbers. The agent evaluates the ex-post reward xt at time t by u(xt),

where u(·) is increasing and u(0) = 0. The objective of the agent is to choose the strategy that
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maximises her lifetime utility

E
[
ϕ

(
δτu(x)

)]
, (1)

where ϕ is strictly increases, τ is the time that the agent learns the value of the parameter, and the

expectation is taken over the distribution of learning time τ . This lifetime utility is the generalised

expected discounted utility introduced in Dejarnette et al. (2018). It allows for different time risk

attitude. When ϕ(z) = z, we have the standard exponential discounting.

2.2 Discussion

This model is a single agent’s learning problem. The unknown parameter is predetermined and

fixed overtime. The agent can costlessly do tests in order to obtain information about the unknown

parameter. The results of the tests are purely informational. That is, the agent’s flow payoff at

time t does not depend on the results of the tests. Therefore, the agent does not have incentive to

pass the test. These assumptions are similar to Meyer (1994), where the learner (‘the principal’ in

their model) can costlessly design tasks to learn the type of the worker and the principal does not

gain any payoffs related to the task completion. Deb & Stewart (2018) also has the similar learning

feature, but the object the learner wants to learn in their model is a strategic player, and hence

not a fixed parameter.

The agent in this paper just wants to learn the true value of the parameter. There is no

exploitation and exploration tradeoffs. Since the agent only gets a reward when she learns the

unknown parameter, there is no exploitation. The agent does not settle before learning the true

value of the parameter. Therefore, the model is not about when the agent stop learning. It is about

how the agent acquires information to learn the true parameter when she has different intertemporal

preferences.

The parameter set is assumed to be finite and sorted. It is assumed to be finite so that the agent

can eventually learn the true parameter. This assumption is equivalent to assuming the unknown

parameter is drawn from a compact set, and the agent learns the unknown parameter when she

is ϵ-close to the true value where ϵ is exogenous. The parameter set is assumed to be sorted to

simplify the expression of the agent’s action and the signal structure. If this assumption is dropped,

the following specification of the agent’s action and the signal structure is equivalent to what is

in the model setup. The agent’s action is to partition the parameter set into two subsets. The

signal tells the agent which subset the true parameter belongs to. Then Linear Search and Binary

Search should also be redefined. The partition is considered to be equivalent to Linear Search if

one of the subsets only contains one element. The partition is considered to be equivalent to Binary

Search if the two subsets have the same number of elements. In the computer science literature,

Binary Search always requires the parameter set to be sorted. But for the purpose of this paper,

this assumption is not needed. This assumption is made to simplify the expression of the agent’s

action and the signal structure.

Time is finite and the duration of the game is long enough such that the agent always has
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enough time to learn the unknown parameter. 4 Linear Search requires the longest time to learn.

If the cardinality of the parameter set is N̄ , it requires at most N̄ −1 periods to learn the unknown

parameter. Therefore, with the assumption that T ≥ N̄ − 2, the agent always has enough time to

learn.

The agent is assumed to be Bayesian. However, because of the signal structure, where the the

signal is binary and noise free, the Bayesian assumption is not as demanding as in the literature.

The agent just needs to be able to partition the parameter set and then re-scale the prior belief

after receiving the signal. Bayes rule is not needed for the agent to revise her belief.

Finally, the agent’s prior belief is assumed to be uniform. Uniform distribution is symmetric. It

describes that all the parameters in the parameter set are equally likely. Following the Principle of

Insufficient Reason, if there are N indistinguishable parameters, each of them should be assigned a

probability 1
N . In Bayesian probability, the uniform prior is the simplest diffuse prior. It basically

describes that the agent only has vague information about the unknown parameter. The important

property I exploit in this paper is the symmetry of the uniform prior. The result that the agent

does not switch between Binary Search and Linear Search relies on this symmetry property. In

Appendix A.2, I discuss a simple relaxation of the uniform prior assumption.

3 The benchmark case

I consider the case that ϕ(z) = z and u(z) = z as the benchmark case. The agent discounts the

future payoff exponentially, and the time-t utility is risk neutral. The lifetime utility now becomes

maxE
[
δτx

]
, (2)

where δ ∈ (0, 1) is the discount factor. I normalise the reward x to 1 in the following discussion to

simplify the calculation.

I first rewrite the agent’s problem as a dynamic programming problem and then characterise

the optimal strategy. The main results Proposition 1 characterise the optimal strategy.

3.1 Dynamic programming setup

I first define the state variable and the choice at time t, and then formally define Binary Search

and Linear Search. Then I write down the Bellman equation.

At each time t, by choosing the test rt, the agent partitions the parameter set into two subsets.

The signals tell the agent which set the true parameter belongs to. The agent then can eliminate

the other subset. Therefore, from the agent’s point of view, the parameter set shrinks to one of the

subsets after receiving the signal. Since the agent remembers the past actions and the past signals,

4This requires that the agent does not choose fully uninformative signals. An alternative situation is when there
exists a deadline such that the agent may not have enough time to learn. That is, the final period T is smaller than
N̄ − 2. If there were a deadline, it may result in different optimal search behaviour. An extreme case is that if the
agent only has one period to learn the value of the parameter, then Linear Search is always optimal, as it allows
the agent to learn with positive probability, while other search strategies do not. When a deadline exists, the agent
might want to maximise the probability of learning the unknown parameter. The optimal search behaviours might
be different from the optimal ones in this paper.
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the optimal action at next time must belong to the subset that is not eliminated. It is then sufficient

to keep track of the evolution of the parameter set. Let Θ0 = Θ be the initial parameter set. Let

Θt be the parameter set at the beginning of time t. Since the agent’s action can be considered as

partitioning the parameter set, and the agent has uniform prior, the cardinality of the parameter set

can be modelled as the state variable at time t. The action of the agent at time t is to choose how

to partition the parameter set into two subsets. Let Nt be the cardinality of the parameter set Θt.

Let mt and nt be the cardinalities of the two subsets the agent chooses. Thus, at time t, the state

variable isNt, and the choice is (mt, nt) ∈ Ft = {(mt, nt)|mt+nt = Nt, (mt, nt) ∈ ((Z+)
2∩[1, Nt])

2},
where Ft is the feasible set of the choice at time t. Due to symmetry, assume without loss of

generality that mt ≤ nt. The evolution of the state is as follows. Given the state at time t and the

choice (mt, nt), the state at time t+ 1 is

Nt+1 =

mt with probability mt
Nt

nt with probability nt
Nt

.

Next, I formally define Binary Search, Linear Search and the agent learns the true parameter

at time t using the terminologies defined above.

Definition 1. The Binary Search Policy in state Nt is the choice (mt, nt) ∈ Ft such that mt = ⌊Nt
2 ⌋

and nt = ⌈Nt
2 ⌉ 5 . The Binary Search Strategy is the strategy that prescribes the agent the Binary

Search Policy in all the states.

Definition 2. The Linear Search Policy in state Nt is the choice (mt, nt) ∈ Ft such that mt = 1

and nt = Nt − 1. The Linear Search Strategy is the strategy that prescribes the agent the Linear

Search Policy in all the states.

Definition 3. The agent learns the true parameter at time t if Nt+1 = 1 (Nt+1 is the state at the

end of the period t).

To simplify the expression, I ignore the t subscript in the following discussion. If the agent uses

the Linear Search Policy in state N , the agent can learn the true parameter with probability 1
N . The

state evolves to N − 1 in the next period with probability N−1
N . If the agent uses the choices other

than the Linear Search Policy in state N , the agent cannot learn the true parameter today if N > 2,

and the state evolves according to his choice. Define another set F† = F \ {(m = 1, n = N − 1)}
to be the set of the choices excluding Linear Search in state N . The Bellman equation is

V (N) = max

{
1

N
+

N − 1

N
δV (N − 1), max

(m,n)∈F†
δ
{m

N
V (m) +

n

N
V (n)

}}
.

The first term is the value of the Linear Search Policy in state N and the second term is the value

of other choices in state N . If N = 2, the agent learns the value of the parameter at the end of this

period. That is, V (2) = 1. From this, the initial condition of the dynamic programming problem

5The notation ⌊x⌋ rounds x ∈ R to the nearest integer less than or equal to x, and the notation ⌈x⌉ rounds x ∈ R
to the nearest integer greater than or equal to x.
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is V (1) = 1
δ . If there is only on element in the parameter set, it means that the agent learns the

true parameter in the last time period. The Bellman equation can be simplified to

V (N) = max
(m,n)∈F

δ
{m

N
V (m) +

n

N
V (n)

}
(3)

with the initial condition V (1) = 1
δ . The closed form of the value function when N ≤ 3 are easy to

compute, where V (2) = 1 and V (3) = 1
3 +

2
3δ. Let W (N) := NV (N) be the product of N and the

value function V (N). The Bellman equation (3) can be rewritten as

W (N) = max
(m,n)∈F

δ
{
W (m) +W (n)

}
.

3.2 The optimal strategy

In this section, I will show that the Linear Search Strategy is optimal if the agent is sufficiently

impatient, and the Binary Search Strategy is optimal otherwise. All other strategies are weakly

sub-optimal.

Using the Linear Search Strategy allows the agent to test one element at each time in any state

N > 2. The best-case scenario is that the agent learns the unknown parameter immediately at

t = 0, but most likely the agent learns the unknown parameter at some other time 0 < t < N̄ − 2.

By using the Linear Search Strategy, the agent effectively check one element in the parameter set at

a time. But, when there are only two parameters in the parameter set, learning that one parameter

is not the true value of parameter is equivalent to learning that the other parameter left is. It is as

if the agent is able to check both parameters at once. Since the agent’s prior belief is uniform, the

expected value associated with the Linear Search Strategy is thus the sum of the geometric series

L = ( 1
N , 1

N δ, . . . , 1
N δN−3) plus 2

N δN−2.

Using the Binary Search Strategy, the agent can learn the value of the parameter within two

consecutive periods. When the state is a power of two, say N = 2K , where K is a positive integer,

the agent learns the unknown parameter at time τN2 = K − 1 with probability one. If the state is

greater than 2K and smaller than 2K+1, the agent learns the unknown parameter at time τN1 = K

or τN2 = K−1 with positive probabilities πN

N and 1− πN

N respectively. The uncertainties associated

with the timing of learning is small compared to that of the Linear Search Strategy. The agent

does face uncertainties in each state that is not a power of two. In an odd state, the uncertainty

arises because the following state is not deterministic. In an even state, the uncertainty can still

arise if the following state is odd. When starting from a large initial state N̄ , a big number of states

can be visited before learning the unknown parameter. Since there can be uncertainties in each of

the odd state visited, one may think that there could be a high aggregate uncertainty associated

with the Binary Search Strategy. However, this is not true. This is because the agent only learns

the unknown parameter when the state evolves to one. By using the Binary Search Strategy, in

any state N > 3, the state never evolves to one directly. Instead, state one only occurs after states

N = 2 and N = 3. When the state N = 3 occurs, with probability of a third, the agent learns

the unknown parameter. When the state N = 2 occurs, the agent learns the parameter for sure

today. If the state evolves to N = 2 directly without reaching state three, the agent learns the
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unknown for certain. If the state evolves to N = 3 before evolving to N = 2, the agent might learn

the unknown parameter today or tomorrow. By using the Binary Search Strategy, the learning

procedure ends in visiting either state N = 2 or N = 3. As a consequence, the agent always learn

the unknown parameter within two consecutive periods. g

Let V L(·) and V B(·) be the values associated with the Linear Search Strategy and the Binary

Search Strategy. Let πN = 2N − 2⌊log2 N⌋+1, τN1 = ⌈log2N⌉ − 1, and τN2 = ⌊log2N⌋ − 1, where

τN1 and τN2 are the two consecutive time at which the agent learns the unknown parameter, and
πN

N ∈ [0, 1) is the probability that the agent learns the unknown parameter at time τN1 .

Lemma 1. The value associated with the Linear Search Strategy is

V L(N) =
1

N

(
1− δN−1

1− δ
+ δN−2

)
.

The value associated with the Linear Search Strategy is

V B(N) =
1

N

[
πNδτ

N
1 + (N − πN )δτ

N
2
]
.

Given the reward x, the function V L(·) and V B(·) decrease in N . Let WL(N) := NV L(N) and

WB(N) := NV B(N).

Lemma 2. When δ > 0.5 (δ < 0.5), the first-order difference of WL(·) is positive (negative), and

the second-order difference of WL(·) is negative (positive). The first-order difference of WB(·) is

positive (negative), and the second-order difference of WB(·) is non-positive (non-negative). When

δ = 0.5, both WL(N) and WB(N) are independent of N .

Lemma 1 and Lemma 2 can be used to show the optimality of the Linear and Binary Search

Strategy.

Proposition 1. There exists a unique threshold δ̄ = 0.5 such that the Linear Search Strategy is

weakly optimal if the agent has a discount factor δ ≤ δ̄, and the Binary Search Strategy is weakly

optimal if the agent has a discount factor δ ≥ δ̄.

To check the optimality of the Linear (Binary) Search Strategy, I define a Linear (Binary)

Search Deviating Strategy and then show that the Linear (Binary) Search Deviating Strategy that

gives the agent a higher payoff than the Linear (Binary) Search Strategy does not exist. A Linear

(Binary) Search Deviating Strategy is a one-step deviation strategy from the Linear Search Strategy,

such that the agent follows Linear (Binary) Search Strategy in all the states n ̸= N , and deviates

from the Linear (Binary) Search Policy in state N .

When the agent deviates from the Linear Search Policy to some other policy (m,n) ∈ F† in

state N , the payoff today will be zero. The most profitable one-step deviation strategy hence

must maximise the continuation value. If the agent uses the (m,n) ∈ F† policy in state N , then,

the (undiscounted) continuation value is the convex combination of V L(m) and V L(n), with the

weights being m
N and n

N . Since m ≤ n and V L(·) is decreasing, the value of V L(m) is greater

than the value of V L(n), but the weight attaches to V L(m) is smaller than the weight attaches to

V L(n). Increasing m (i.e. decreasing n) decreases the value of V L(m), but puts a higher weight to
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that value. At the same time, it increases the value of V L(n), but decreases the weight attaches

to V L(n). As a consequence, it is ambiguous whether increasing m and decreasing n increases the

continuation value. Whether increasing m is optimal depends on the value of the function WL(·).
According to Lemma 2, the function WL(·) is decreasing and convex when δ ≤ δ̄. Therefore, the

increase of the continuation value from decreasing n is smaller than the decrease of the continuation

value from increasing m. Thus, if the agent were to deviate from the Linear Search Strategy in

state N , the most profitable Linear Search Deviating Strategy is to choose (m,n) = (2, N − 2) in

state N .

In state N , When the agent deviates from the Linear Search Policy in state N to (m,n) =

(2, N−2), the agent gives up the flow payoff of 1
N today, and increases the (discounted) continuation

value from δN−1
N V L(N−1) to δ[N−2

N V L(N−2)+ 2
N V L(2)]. To check whether the one-step deviation

is optimal, the agent compares the value she gives up today (the loss) with the increase of the

discounted continuation value (the gain). If the loss and the gain are scaled up by N , then the

rescaled loss is a constant and the rescaled gain is decreasing in N when δ < δ̄. That is, the

rescaled gain is maximised in the smallest state N = 4. Therefore, if it is not optimal for the

agent to deviate from the Linear Search Policy in state N = 4, then, the agent would not want to

deviate from the Linear Search Policy in any other state that is greater than four. In state N = 4,

when δ ≤ δ̄, the discounted increase in the continuation payoff by deviating from the Linear Search

Policy is smaller than the payoff given up today. The agent hence does not want to deviate in state

N = 4, and does not want to deviate in any other states greater than four.

When the agent deviates from the Binary Search Strategy to the policy (m,n) ∈ F† in state N ,

it does not change the payoff today, which is still zero. but changes the continuation values. If the

continuation value in state N is scaled up by N , then, given any policy (m,n) ∈ F† in state N , the

rescaled continuation value is the sum of the two elements mV B(m) and nV B(n). By definition,

the Binary Search Policy in state N maximises the value of m. Whether decreasing m increases

the continuation value depends on the property of the function WB(·). According to Lemma 2,

WB(·) function is increasing and concave when δ > δ̄. Since m is assumed to be smaller than n,

decreasing m by one does not offset the effect of increasing n by one. Therefore, deviating to the

policy (m,n) ∈ F† in state N is not optimal when δ is sufficiently big.

If instead of deviating to a policy (m,n) ∈ F†, the agent deviates to the Linear Search Policy in

state N , effectively, the agent postpones Binary Search until tomorrow and takes the risk of learning

the unknown parameter today. If the agent fails to learn the unknown parameter today, she gets

a small benefit of decreasing the state by one in next period. The cost and benefit of deviating to

the choice Linear Search in state N are different in different states. It is more beneficial to deviate

to the Linear Search Policy in a small state, say in state N = 4, rather than in a big state, say

in state N = 400. First, it is because the probability of learning the unknown parameter, which

is 1
N , is higher when N is small. Second, it is because Binary Search is more efficient in terms

of eliminating the number of impossible candidates when the state is big. For example, in state

N = 400, the Binary Search Policy today will eliminate 200 impossible candidates, while in state

N = 4, the Binary Search Policy will only eliminate 2 impossible candidates. Because of the two

reasons above, if the agent would like to deviate to the Linear Search Policy in some state, it is
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most profitable for him to deviate in state N = 4, rather than in state N = 400. If deviating to

the Linear Search Policy in state N = 4 is not optimal, then deviating to Linear Search Policy

in other states is also not optimal. The gain from deviating to the Linear Search Policy in state

N = 4 is 1
4x, and the loss is V B(4)− δ 3

4V
(3). When δ > δ̄, the gain is always smaller than the loss.

Deviating to the Linear Search Policy in state N = 4 is thus not optimal. Therefore, when δ > δ̄,

deviating to the Linear Search Policy in any state N is not optimal.

3.3 Discussion

The thresholds δ̄ in Proposition 1 is a constant 1
2 . This means that for any value δ ∈ (0, 1),

either the Binary Search Strategy or the Linear Search Strategy are weakly optimal. Some of the

alternative strategies are weakly sub-optimal but not strictly sub-optimal because they induce the

same distribution of the learning time as is induced by the Linear or Binary Search Strategy. For

example, when N = 6, the following two strategies induce the same distribution of the learning

time. That is, the agent learns the parameter at t = 1 with probability 1
3 and learns the parameter

at t = 2 with probability 2
3 .

Strategy One: The Binary Search Strategy.

Strategy Two: The agent chooses (m,n) = (2, 4) in state N = 6. If the state 4 occurs, the agent

chooses (m,n) = (2, 2). and if the state 2 occurs, the agent chooses (m,n) = (1, 1).

Since these two strategies induce the same distribution of the learning time, these two strategies

induce the same expected utility. The Strategy Two above is only weakly dominated by the Binary

Search Strategy.

The threshold δ̄ is a constant, and is independent of the state N . For example, if an agent has

the discount parameter δ = 0.45, then it is optimal for him to use the Linear Search Policy in state

N = 4, and it is also optimal for the agent to use the Linear Search Policy in state N = 400. If

the agent has the discount parameter δ = 0.9, then it is optimal for him to use the Binary Search

Policy in state N = 4 and in state N = 400. Thus the agent does not need to commit to these

policies, they are the consequences of the optimal choices at every state. The simple form of the

policy is due to the simple form of the state variable. The state variable is just the cardinality

of the parameter set because of the uniform prior assumption. Since the agent’s prior belief is

assumed to be uniform, the agent’s posterior belief is still uniform. The agent always believes that

the remaining candidates are equally likely, that is, the likelihood ratio of any two candidates is

one. The number of candidates in the parameter set only scales up or down the absolute value

of the probability attached to each candidate, but does not change the likelihood ratio of any two

candidates. As a result, with the uniform prior assumption, in different states, the agent is facing

the problem with the same properties: all the elements in the parameter set are equally likely to

be the true value of the parameter. If the likelihood ratio of any two elements changes as the

state changes, the agent might use different policies in different states. For example, let N be the

cardinality of the initial parameter set, which is the initial state. Consider the agent’s prior belief

to be such that the first element θ1 in the parameter set is the most likely one with probability

a half, and all other parameters are equally likely. The likelihood ratio of θ1 to other elements is

N − 1. In this case, since θ1 is very likely compared to other elements in the parameter set, the
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agent has a strong incentive to choose the Linear Search Policy in state N regardless the value of δ.

If the agent does not learn the unknown parameter, the state N − 1 occurs and the agent’s belief

is revised to a uniform distribution. In state N − 1, the agent hence is facing the problem as in

the benchmark case. The likelihood ratio of any two elements is one. The agent’s strategy then

depends on δ. In Appendix A.2, I consider another prior belief to check how the it can affect the

agent’s optimal strategy.

The argument above appears to say that being patient or impatient explains why the Linear

Search Strategy or Binary Search Strategy is optimal. But, there are other models of time prefer-

ence where this apparent relationship fails. Consider the expected utility with a linear discounting,

that is, the agent pays a fixed cost c at each time t if she searches and does not learn the un-

known parameter (see Appendix A.1 for details). My main result in this case is that the Binary

Search Strategy is always optimal as long as the cost c is positive and bounded. The agent is also

impatient in this case, but this impatience is modelled by a linear discounting. Even though the

linear discounting and the exponential discounting both describe the agent being impatient, the

optimal strategies in these case are different from each other. In fact, the expected utility with

the exponential discounting does not just describe the agent being impatient, it also describes the

agent being “time risk loving”. To understand time risk, consider the following two options one

can choose from. These are just illustrative examples to show what time risk refers to 6.

Option One: Learn the unknown parameter today (t = 0) or the day after tomorrow (t = 2)

with equal probabilities.

Option Two: Learn the unknown parameter tomorrow (t = 1) for certain.

If the agent discounts future utilities exponentially, Option One gives the agent an ex-ante

utility of 1
2(1 + δ2)x, and Option Two gives the agent an ex-ante utility of δx. The agent then

always prefers Option One, as it gives the agent a higher expected utility with any δ < 1. Since

these two options yield the same expected learning time: tomorrow (t = 1), and the agent prefers

the one that is risky in terms of learning time, the agent is hence time risk loving. If the agent

discounts future utilities with linear discounting, then the agent is indifferent between these two.

The agent is hence time risk neutral.

The comparison between the two different preferences shows that the time risk preference affects

the optimal strategy. In fact, the fixed search cost utility can be expressed as the utility function

Equation (1) with ϕ(z) = log(z). The ϕ(·) function determines the agent’s time risk attitude

(Dejarnette et al. (2018)) and affects the agent’s optimal strategy.

4 Time risk attitude

In this section, I consider the lifetime utility as in eq. (1). The lifetime utility is identified with a

triple (ϕ, δ, u). As discussed in Dejarnette et al. (2018), the agent’s time risk attitude is determined

by the concavity of ϕ, the intertemporal substitution is determined by δ and ϕ, and the atemporal

risk attitude towards the lotteries with only immediate payment is determined by ϕ◦u. I show that

if ϕ is a power function with power 1 − γ and u is the inverse of ϕ, then, the optimal strategy of

6This example and the discussion of the time risk are borrowed from Dejarnette et al. (2018).
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the agent with utility (ϕ, δ, u) is the same as the benchmark agent (the agent with utility function

as in eq. (2)) with a discount parameter ρ where ρ = δ1−γ .

If ϕ is a power function, say ϕ(z) = 1
1−γ z

1−γ where γ ∈ (0, 1) ∪ (1,+∞), then, eq. (1) can

describe both time risk loving and time risk averse utility. The following lemma presents this

result.

Lemma 3. If ϕ(z) = sign(1 − γ)az1−γ where a > 0 is a constant, then, for any increasing u

function, when γ ∈ (0, 1), (ϕ, δ, u) describes time risk loving preference, and when γ > 1, (ϕ, δ, u)

describes time risk averse preference.

This lemma follows directly from Dejarnette et al. (2018) Prop 2. To understand why this is

true, reconsider the two options introduced in Section 3.

Option One: Learn the unknown parameter and get a reward of one today (t = 0) or the day

after tomorrow (t = 2) with equal probabilities.

Option Two: Learn the unknown parameter and get a reward of one tomorrow (t = 1) for

certain.

Suppose ϕ(z) = 1
1−γ z

1−γ . Given the preference (ϕ, δ, u), the utility from Option One is
1

1−γ (
1
2u(1)

1−γ + 1
2 [δ

2u(1)]1−γ), and the utility from Option Two is 1
1−γ [δu(1)]

1−γ . When γ ∈ (0, 1),

the utility from Option One is greater than the utility from Option Two. When γ > 1, the utility

from Option One is smaller than the utility from Option Two, and The special cases discussed in

Section 3, the exponential discounting and the search with a fixed cost, are limiting cases. When

γ → 0, ϕ(z) converges to ϕ(z) = z, which is the exponential discounting case. When γ → 1, ϕ(z)

converges to the natural log function, which describes the linear discounting preference.

Next, I show that there exists a (ϕ, δ, u) such that given any strategy, the utility derived from

(ϕ, δ, u) equals the utility derived from the exponential discounting with a different discount pa-

rameter ρ. In addition, such functional forms of ϕ and u are unique.

Lemma 4. Let a ̸= 0 be a constant. Then, ϕ
(
δτu(x)

)
= ρτx if and only if ϕ̂(z) = az

log ρ
log δ and

û(x) =
(
x
a

) log δ
log ρ . If in addition ρ = δc where c ̸= 0, then, ϕ̂(z) = azc and û(x) =

(
x
a

) 1
c .

Each strategy pins down a distribution of the learning time. According to Lemma 4, given a

strategy, the utility derived from (ϕ̂, δ, û), which is E
[
ϕ
(
δτu(x)

)]
, equals the utility derived from

the exponential discounting with a different discount parameter ρ, which is E
[
ρτx

]
. This shows

that the agent with preference (ϕ̂, δ, û) behaves as if she discounts future payoffs exponentially with

a discount parameter ρ = δc. Because of this equivalence of the behaviour, this lemma together

with Proposition 1 can be used to find the optimal strategy of the agent with preference (ϕ̂, δ, û).

In the following discussion, let ϕ̂(z) = 1
1−γ z

1−γ and û(x) = [(1−γ)x]
1

1−γ where γ ∈ (0, 1)∪(1,∞).

This specification is not necessary for the following results, but it gives a clearer intuition. I refer

to ρ = δ1−γ as a virtual discount parameter.

The following proposition characterises the optimal strategy for preference (ϕ̂, ρ, û).

Proposition 2. For each γ ∈ (0, 1), there exists a unique threshold δ̆γ :=
(
δ̄
) 1

1−γ < δ̄ = 1
2 , such

that the Linear Search Strategy is optimal if δ ≤ δ̆γ and the Binary Search Strategy is optimal if

δ ≥ δ̆γ. The threshold δ̆γ is decreasing in γ, and it approaches δ̄ when γ approaches zero.

For γ > 1, the Binary Search Strategy is optimal given any discount parameter δ ∈ (0, 1).
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Figure 1: The optimal strategy for each value of the discount parameter δ and the risk-aversion
parameter γ. The functional form of the red curve is δ1−γ = 1

2 .

When γ ∈ (0, 1), as shown in Lemma 4, the agent with preference (ϕ̂, δ, û) behaves as if she

discounts the future payoffs exponential with a discount parameter ρ = δ1−γ . Given Proposition 1,

the Linear Search Strategy is optimal if the discount parameter ρ is weakly smaller than a half.

That is, the Linear Search Strategy is optimal if δ is weakly smaller than
(
1
2

) 1
1−γ := δ̆γ . The similar

argument holds for the Binary Search Strategy. Since γ ∈ (0, 1), δ̆γ decreases in γ.

When γ ∈ (0, 1), the agent’s virtual discount parameter ρ is greater than his real discount

parameter δ. Due to the effect of the time risk aversion, the agent behaves as if she is more

patient. For example, consider an agent A who has the benchmark utility and discounts future

payoffs exponentially with the discount parameter δ̃ < 1
2 . The optimal strategy of this agent is then

the Linear Search Strategy. Consider another agent B with preference (ϕ̂, δ̃, û) where γ ∈ (0, 1).

Suppose γ takes the value such that the optimal strategy of the agent B is the Binary Search

Strategy. Imagine there is an outside observer observing these two agents’ strategies. If the outside

observer incorrectly believes that the agent B has the preference as in the benchmark case, then

the outside observer would conclude that the agent B is more patient than the agent A. However,

the fact is that the agent B is as patient as the agent A, but less time risk loving. The decreasing δ̆γ

shows that when γ increases, the agent becomes less time risk loving, and has a stronger incentive

to use the Binary Search Strategy. Being less time risk loving, the less patient agent still prefers

to use the Binary Search Strategy.

When γ > 1, the agent is time risk averse. Since we know from Section 3 that the Binary

Search Strategy is optimal for the time risk neutral agent as it induces a distribution of learning

time with a smaller mean, when the agent becomes time risk averse, the agent prefers the Binary

Search Strategy more. Since the Binary Search Strategy induces a distribution of the learning time

with a smaller variance, it is hence also optimal for the risk averse agent.

Figure 1 demonstrates the optimal strategy given the value of the discount parameter δ and the

time risk aversion parameter γ. From Proposition 2, we know that the functional form of the red

curve in Figure 1 is δ1−γ = 1
2 . When the discount parameter δ is greater than a half, the optimal

strategy is the Binary Search Strategy given any value of the time risk aversion parameter γ. That

is, when the agent is sufficiently patient, the effect of being patient dominates the effect of time risk
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attitude. It is optimal for the agent with δ > 1
2 to use the Binary Search Strategy regardless the time

risk attitude. When the time risk aversion parameter γ is greater than one, the optimal strategy

is the Binary Search Strategy given any value of δ. That is, when the agent is time risk averse, the

effect of the time risk attitude dominates the effect of patience. It is optimal for the time risk averse

agent to use the Binary Search Strategy regardless the patience level. When the agent is time risk

loving and not sufficiently patient, that is, when δ < 1
2 and γ < 1, there is a trade-off between

learning in a risky way and learning faster in expectation. Being time risk loving incentivises the

agent to take the risk of learning the parameter today, while being patient incentivises the agent

to learn faster in expectation. As a consequence, the optimal strategy depends on the effect that

dominates.

Given the value of γ, the threshold δ̆γ in Proposition 2 is a constant, and it does not depend

on N . This means that the agent’s optimal strategies have the same time-consistent property as

in Section 3. That is, if the agent has the discount parameter δ and the risk-aversion parameter γ

such that ρ = δ1−γ = 0.45, then it is optimal for him to use the Linear Search Policy in state N = 4

and the state N = 400. If the agent has the discount parameter δ and the risk-aversion parameter

γ such that ρ = δ1−γ = 0.9, then it is optimal for him to use the Binary Search Policy in state

N = 4 and the state N = 400. Therefore, the agent does not need to commit to a certain policy,

the commitment to a certain policy along the path of learning is a result of the optimal strategy.

This is true because of the equivalence condition specified in Lemma 4. The optimal strategies in

this section thus preserve the same properties as in the benchmark case.

The Linear Search Strategy is not only risky in terms of the timing of learning the unknown

parameter, it is also risky in terms of whether the agent can learn at a certain time t. That is,

if N is the state at time t, by using the Linear Search Strategy, the agent learns the parameter

with the probability 1
N , and does not learn the parameter with the probability N−1

N . There are

two different types of risks associated with the Linear Search Strategy. One is the time risk that

has been discussed in the previous part of this section, and the other one is the temporal risk at

each time t. Because û is the inverse of ϕ̂, the agent is assumed to be risk-neutral towards time-t

lotteries. To discuss the effect of the temporal risk attitude, I consider EZ preferences in Section 5.

5 Epstein and Zin preferences

In order to discuss the EZ preferences, I first rewrite the one time reward at time t as a stream

of reward over time. Since the agent essentially gets a reward of zero at the time when the

parameter is not learned, learning the parameter at time τ is equivalent to getting a reward stream

(x1, x2, . . . , xτ , xτ+1 . . . , xT ) = (0, 0, . . . , x, 0, . . . , 0). After introducing this reward stream, the EZ

recursive setup can be used to evaluate the agent’s lifetime utility.

The recursive formulation of EZ preferences is developed in Epstein & Zin (1989), which is

originated in Kreps & Porteus (1978) in a finite time setting. The EZ recursive utility function

consists of two components: a CES time aggregator that characterises the preference over the

deterministic payoff vector, and a risk aggregator that aggregates the risk associated with future

uncertain payoffs. Consider a deterministic payoff vector (z0, z1, . . . , zT ), with zt denoting the payoff
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at time t. The utility from time t onwards is

U(zt, zt+1, . . . , zT ) =
(
zρt + δU(zt+1, . . . , zT )

ρ
) 1

ρ (4)

where δ ∈ (0, 1) is the discount factor and 1
1−ρ > 0 is the elasticity of intertemporal substitution

(EIS). The greater the value of EIS, the greater willingness the agent has (or, the easier it is)

to substitute today’s payoff to tomorrow’s payoff. In case of the uncertain payoffs, the utility is

evaluated by a certainty equivalent operator that is introduced in Kreps & Porteus (1978). Let z

be a set of future payoff vectors. Let p be a probability measure on the set z. Then the utility from

the uncertain payoffs is

(
EpU(z)α

) 1
α (5)

where 1− α > 0 is the relative risk aversion (RRA). A smaller value of α corresponds to a greater

risk aversion.

How does this utility specification affect the agent’s evaluation of Binary Search and Linear

Search? The Binary Search Policy ensures the agent a certain payoff today, either zero or one,

but the Linear Search Policy gives the agent an uncertain payoff both today and in the future. To

be more specific, if the agent chooses the Binary Search Policy at time t, then the payoff at time

t is deterministic and the future payoffs are uncertain. The agent then evaluates the uncertain

future payoffs by the certainty equivalent operator, and the total utility at time t aggregates the

certain payoff at time t and the certainty equivalent of the future uncertain payoffs using the CES

aggregator. If the agent chooses the Linear Search Policy at time t, the payoff today and the

payoffs in the future are both uncertain. To evaluate the total utility associated with the uncertain

payoffs, the agent first evaluates the utility of each payoff stream using the CES aggregator. The

total utility is then calculated using the certainty equivalent operator. In other words, when the

agent chooses Binary Search, the CES aggregator is the ‘outside operator’. The certainty equivalent

operator is only used to evaluate the future payoffs, and hence is the ‘inside operator’ When the

agent chooses the Linear Search Policy, the CES aggregator becomes the inside aggregator, and the

certainty equivalent operator is the outside operator.

Given the recursive formulation of the EZ preference, the Bellman equation in state N is

V EZ(N) = max

{( 1

N
(1ρ + δ0ρ)

α
ρ +

N − 1

N
(0ρ + δV EZ(N − 1)ρ)

α
ρ

) 1
α
,

max
(m,n)∈F†

(
0ρ + δ

(m
N

V EZ(m)α +
n

N
V EZ(n)α

) ρ
α

) 1
ρ

}

with the initial condition V EZ(1) = δ
ρ

α2 . The initial condition is computed from the fact that

V EZ(2) = 1, that is, when the state N = 2, the agent learns the true value of the parameter

immediately after one search. The first element in the Bellman equation is the value associated

with the Linear Search Policy in state N . By choosing the Linear Search Policy today, the agent

either gets a payoff of one today and zero tomorrow, or a payoff of zero today and the continuation

value V EZ(N − 1) tomorrow. It is then as if the agent is facing two possible payoff vectors: (1, 0)
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and (0, V EZ(N − 1)), with probability 1
N and N−1

N respectively. The utility is evaluated by the

certainty equivalent of the utilities associated with the two payoff vectors. The second element in the

Bellman equation is the value associated with the policy (m,n) ∈ F† in state N . By choosing the

policy (m,n) ∈ F†, the payoff of zero today is certain. The continuation value however, is V EZ(m)

or V EZ(n) with probability m
N and n

N . The certainty equivalent operator is used to calculate the

value associated with the future payoff, and the CES aggregator aggregates the payoff today and

the certainty equivalent of the payoff tomorrow. The agent chooses the policy (m,n) that gives the

agent the highest value. With the initial condition V EZ(1) = δ
ρ

α2 , the Bellman equation can be

simplified to

V EZ(N) = max
(m,n)∈F

(
ζ
(m
N

V EZ(m)α +
n

N
V EZ(n)α

)) 1
α

, (6)

where ζ ≡ δ
α
ρ is a virtual discount parameter.

In general, the parameters α and ρ can take any value smaller than one, that is, both of the

parameters can be negative. But, in the following discussion, I restrict the values of α and ρ to be

positive. First, to make sure the parameter ζ is indeed a virtual discount parameter, I restrict the

parameters α and ρ to have the same sign. Second, Epstein & Zin (1989) points out that decreasing

α can change the agent’s preference in terms of the timing of the resolution of uncertainty. To shut

down this possible effect, I restrict the value of α to be positive. That is, I only consider the

case that the agent is not ‘too risk averse’, and it is not ‘too hard’ to substitute the consumption

intertemporally.

5.1 The optimal strategy

This section discusses the agent’s optimal strategy and compares it with the benchmark case.

To find the agent’s optimal strategy in this section, I show that the Bellman equation (6)

is closely related to the Bellman equation (3) in the benchmark case. Let W(N) = V EZ(N)α.

Equation (6) can be rewritten as

W(N) = max
(m,n)∈F

ζ
(m
N

W(m) +
n

N
W(n)

)
(7)

with the initial condition W(1) = 1
ζ . Equation (7) is essentially the same Bellman equation as

Equation (3) with the same initial condition. The only difference is that the discount parameter

in Equation (7) is the virtual discount parameter ζ, and the discount parameter in Equation (3)

is the real discount parameter δ. Since the Bellman equation in this section and the Bellman

equation in the benchmark case are closely related in the way described above, the agent with EZ

preferences behaves the same as the agent in the benchmark case with a discount parameter ζ.

In the benchmark case, the value of the real discount parameter determines the agent’s optimal

strategy. In this section, the virtual discount parameter ζ hence determines the optimal strategy

of the agent with EZ preferences. That is, if ζ is greater than a half, the Binary Search Strategy

is optimal. If ζ is smaller than a half, the Linear Search Strategy is optimal. Since the result

Proposition 1 in the benchmark case are presented as how the real discount parameter δ affects the
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agent’s optimal strategy, I characterise the agent’s optimal strategy below in the similar way. Let

ζ̄ = 1
2 .

Proposition 3. If the agent has EZ preferences, given any (α, ρ) pair, there exists a unique thresh-

old δ̃ = (ζ̄)
ρ
α such that if δ > δ̃, the Binary Search Strategy is the optimal strategy. If δ < δ̃, the

Linear Search Strategy is the optimal strategy. If δ = δ̃, the agent is indifferent between the Binary

Search Strategy and the Linear Search Strategy.

To better understand how the benchmark agent and the agent with EZ preferences behave

differently, I consider the marginal agent who is just indifferent between the Linear Search Strategy

and the Binary Search Strategy. The marginal agent in the benchmark case (the benchmark

marginal agent) has a discount parameter δ = δ̄, and the marginal agent with EZ preference (the

EZ marginal agent) has the parameter triple (δ, α, ρ) such that δ = δ̃ = (ζ̄)
ρ
α . Since the two

thresholds δ̄ and ζ̄ are indeed the same, the relationship of δ̄ and δ̃ depends on the value of the

ratio of ρ and α. Proposition 3 hence can be used to check which marginal agent is more patient.

Note that EIS = 1
1−ρ and RRA = 1− α.

Lemma 5. If α > ρ (EIS < 1
RRA), then δ̃ > δ̄. If α < ρ (RRA > 1

EIS ), then δ̃ < δ̄.

Lemma 5 says that if EIS is smaller than the reciprocal of RRA, then the EZ marginal agent

is more patient than the benchmark marginal agent. If RRA is greater than the reciprocal of EIS,

then the EZ marginal agent is less patient than the benchmark marginal agent. This can be better

understood by considering the agent’s incentives and the features of the Linear and Binary Search

Strategies. When EIS is small, it is hard to substitute the payoffs intertemporally. The agent hence

has stronger incentives to use Linear Search Strategy, as it allows the agent to get immediately

payoff. However, this payoff is uncertain. Therefore, there is a tradeoff between getting the payoff

today and facing uncertain payoffs. The optimality of Linear Search or Binary Search depends on

the value of EIS and RRA. If it is sufficiently hard to substitute intertemporal payoffs such that

the gain of getting a payoff today overweighs the agent’s aversion towards risky payoff, that is, if

EIS < 1
RRA , then the agent with EZ preference is willing to use Linear Search even when the agent

has the discount parameter δ > δ̄. This case is referred to the case that EIS dominates RRA. If,

however, the agent is sufficiently risk averse such that the aversion towards risky overweighs the

benefits of getting the payoff today, that is, if RRA > 1
EIS , then the agent with EZ preference is

willing to use Binary Search even when the agent has the discount parameter δ < δ̄. This case is

referred to as the case that RRA dominates EIS. Figure 2 plots the virtual discount parameter ζ

as a function of the real discount parameter δ. The left panel plots the case that EIS dominates

RRA, and the right panel plots the case that RRA dominates EIS. When EIS dominates RRA, it

is optimal for the agent with the discount parameter δ ∈ (δ̄, δ̃) (thick black line on the left panel)

to use the Binary Search Strategy in the benchmark case, but to use the Linear Search Strategy

in the EZ preference case. This is because Linear Search satisfies the agent’s preference on not

willing to substitute intertemporal payoffs. When RRA dominates EIS, it is optimal for the agent

with the discount parameter δ ∈ (δ̃, δ̄) (thick black line on the right panel) to use the Linear Search

Strategy in the benchmark case, but to use the Binary Search Strategy in the EZ preference case.
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Figure 2: The relationship between δ̄ and δ̃

This is because Binary Search is less risky than Linear Search. Since the agent is very risk averse,

she prefers Binary Search.

6 The present-biased preference

The optimal strategies in previous sections all have a consistent property. That is, if it is optimal

for the agent to use the Linear Search Policy in state N = 400, then it is also optimal for the agent

to use the Linear Search Policy in state N = 4. It is not optimal for the agent to switch between

actions. In this section, I show that if the agent has a time-inconsistent preference, there exists the

situation such that it is optimal for the agent to use the Binary Search Policy when the state is

big, say N = 400, and it is optimal for him to use the Linear Search Policy when the state is small,

say N = 4.

This section discusses the present-biased preference. Consider the case that an agent is asked

which of the two options she prefers: one is to get a payment of one on Wednesday, and the other

one is to get a payment of two on Friday. If the agent has the time-consistent preference, she will

make the same decision regardless the question is asked on Monday or Wednesday. If the agent has

the present-biased preference, she may, however, make different decisions when asked on different

days. That is, when asked on Monday and Tuesday, the agent prefers to get the payment of two on

Friday, but when asked on Wednesday, she changes his mind and prefers to get the payment of one

on Wednesday, which is today. The agent changes his mind when the future becomes the present.

The agent is biased towards the payment at the present when asked on Wednesday and thus has a

stronger incentive to get the payment today.

These present-biased preferences could be described by quasi-hyperbolic discounting (see Phelps

& Pollak (1968), Laibson (1997), Fischer (1999) and O’Donoghue & Rabin (1999)). To discuss the

agent’s present-biased preference, I consider the reward stream as in Section 5. Since the agent’s

preference changes over time, it is as if the agent has different selves at different times. The agent’s
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time-t self evaluates the payments at and after time t as

E
[
xt + β

T∑
τ=t+1

δτ−txτ

]
, (8)

where β ∈ (0, 1) is the present-biased parameter, and δ ∈ (0, 1) is the time-consistent discount

parameter. The present-biased parameter β describes the magnitude of the present bias. When β =

1, there is no present bias, and quasi-hyperbolic discounting is identical to exponential discounting.

When β < 1, the smaller the β, the smaller weight the agent attaches to the time that is ‘the future’,

and hence the greater the present bias is. When β = 0, the agent only cares about the payment

today. In addition to the fact that the agent is present-biased, the agent is also assumed to be

aware of his present bias. That is, the agent knows that when the future becomes the present, his

preference changes. This type of the agent is referred to as the sophisticated agent in the literature.

In this section, I show that the optimal strategy for the present-biased agent with the discount

parameter δ ≤ δ̄ and the present-biased parameter β ∈ (0, 1) is still the Linear Search Strategy.

This is because the present-biased preference gives the agent a stronger incentive to choose the

Linear Search Policy in each state. Since it is already optimal for his time-consistent counterpart

to choose the Linear Search Policy in each state, it is hence also optimal for the present-biased

agent to choose the Linear Search Policy in each state when δ ≤ δ̄.

For the present-biased agent with δ > δ̄, the optimal strategy depends on the agent’s present-

biased parameter. When the agent is not very present-biased, the Binary Search Strategy is still the

optimal strategy. Suppose the agent’s future selves use the Binary Search Policy in all future states.

First notice that when δ > δ̄, any (m,n) ∈ F† policy gives a weakly smaller payoff than that of the

Binary Search Policy in state N . This is because (m,n) ∈ F† policy and Binary Search Policy give

the agent zero immediate reward. Since the present-biased agent is assumed to be consistent when

evaluating the future payoffs, she behaves essentially the same as the time-consistent agent when

there is no immediate payoff getting involved. As a result, I only consider whether it is optimal

for the agent to use the Linear Search Policy in the current state. If the agent uses the Linear

Search Policy in the current state, the benefit is the immediate expected reward associated with

learning. That is 1
N . The (future) cost is the difference between using the Binary Search today

and tomorrow V B(N) − δN−1
N V B(N − 1). If the agent is not very present-biased, that is, the

present-biased parameter is greater than the ratio of the benefit to the cost, then, using the Linear

Search Policy in current state N is not optimal. Using the Binary Search Policy in state N hence

is optimal, given that her future selves use the Binary Search Policy. Using the idea of backward

induction, one can check whether using the Binary Search Policy is optimal in state N given that

the agent’s future selves use the Binary Search Policy. If this is true for all the states, then, the

Binary Search Strategy is the optimal strategy. This requires the agent’s present-biased parameter

to be greater than β̄N :=
1
N

V B(N)−δN−1
N

V B(N−1)
for N = 4, 5, . . . , N̄ where N̄ is the cardinality of the

parameter set. The benefit associated with the Linear Search Policy is the highest in state N = 4,

and the cost associated with the Binary Search Policy is the lowest in state N = 4. As a result, if

the present-biased parameter β is weakly greater than β̌ := β̄4, then, the Binary Search Strategy

is the optimal strategy.
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When δ > δ̄, for any β < β̌, there exists a state N such that the Linear Search Policy is optimal

in all the states H < N , and the Binary Search Policy is optimal in state N . That is, there exists

a switch of actions from Binary Search (when the state is big) to Linear Search (when the state

becomes small). Suppose the agent’s future selves use the Linear Search Policy in all future states.

In order to check which policy is optimal in state N , let

P (N) ≡ max
{m,n}∈F†

δ

{
m

N
V L(m) +

n

N
V L(n)

}
be the highest value associated with the policy (m,n) ∈ F† in state N given that the agent’s

future selves use the Linear Search Policy in all the states smaller than N . If the agent uses the

Linear Search Policy in the current state, the benefit is the immediate expected reward associated

with learning. That is 1
N . The cost of using the Linear Search Policy in state N is the forgone

payoff from using the (m,n) ∈ F† policy, which is P (N) − δN−1
N V L(N − 1). Using the idea

of backward induction, one can check which Policy is optimal in state N given that the agent’s

future selves use the Linear Search Policy. If the agent’s present-biased parameter is smaller than

β̃N :=
1
N

P (N)−δN−1
N

V L(N−1)
, the ratio of the benefit to the cost of using the Linear Search Policy in

state N , then, it is optimal for the agent to use the Linear Search Policy in state N . Otherwise, it

is optimal for her to use the (m,n) ∈ F† policy that achieves P (N) in state N . From the discussion

in the benchmark case,we know that when δ > δ̄, the (m,n) ∈ F† policy that achieves P (N) in

state N is the Binary Search Policy because of the concavity of the function WL(N) = NV L(N).

Therefore, when the agent’s present-biased parameter is smaller than β̃N , it is optimal for the agent

to use the Binary Search Policy in state N .

When it is optimal for the agent to use the Binary Search Policy in a state N given the belief

that her future selves use the Linear Search Policy, we still need to check whether it is indeed

optimal for her future selves to use the Linear Search Policy. In the appendix, I show that β̃N

decreases in N . This is because the benefit of using the Linear Search Policy in state N decreases

in N , and the cost increases in N . As a result, in order to guarantee that it is optimal for the agent

to use the Linear Search Policy in any state smaller than N , the agent’s present-biased parameter

should be greater than β̃N−1.

The following proposition concludes the result discussed above.

Proposition 4. When the present-biased agent has the discount parameter δ ≤ δ̄ and the present-

biased parameter β ∈ (0, 1), the optimal strategy is the Linear Search Strategy.

When the present-biased agent has the discount parameter δ > δ̄ and the present-biased param-

eter β ≥ β̌, the optimal strategy is the Binary Search Strategy.

When the present-biased agent has the discount parameter δ > δ̄ and the present-biased param-

eter β ∈ [β̃N , β̃N−1), it is optimal for the agent to use the Binary Search Policy in state N and to

use the Linear Search Policy in state H < N .

Consider an agent with discount parameter δ > δ̄ and the present-biased parameter β ∈
[β̃N , β̃N−1), the last point of Proposition 4 indicates that in states N < N , the agent’s optimal

policy is the Linear Search Policy, and the agent’s optimal policy in state N is the Binary Search

Policy. But in states N > N , we do not know what the optimal policy of the agent is. Proposition 4
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does not characterise the complete optimal strategy when δ > δ̄ and β < β̃4 due to the complexity

of the calculation. Instead, it only specifies that there exists at least one switch between the Linear

Search Policy and the Binary Search Policy. If there exists more than one switch between actions,

the last point of Proposition 4 characterises the smallest state in which the agent switches actions.

This serves the purpose to show that when the agent has time-inconsistent preferences, the optimal

strategy does not have the consistent property as in the cases with time-consistent preferences.

To better explain the result, I introduce the present-biased agent’s time-consistent counterpart.

If a present-biased agent has a discount parameter δ̂ and a present-biased parameter β̂, then

his time-consistent counterpart also has a discount parameter δ̂, but a present-biased parameter

β = 1. The result above indicates that in comparison with the present-biased agent’s time-consistent

counterpart, it is optimal for the present-biased agent to use the Linear Search Policy in small states,

while it is always optimal for his time-consistent counterpart to use the Binary Search Policy. This

is because the value associated with a policy in state N consists of two parts: the expected payment

today and the perceived discounted continuation value. Given the future policies remaining the

same, consider the cost and the benefit of the Linear Search Policy in the current state N . The cost

of the Linear Search Policy comes from the discounted continuation value. The greater the current

state N , the more costly to use the Linear Search Policy. The benefit of the Linear Search Policy

is from the expected payment today. The smaller the state N , the greater the benefit associated

with the Linear Search Policy. Notice that when the agent is present-biased, the cost of the Linear

Search is perceived to be smaller because of the present-biased parameter, but she evaluates the

expected payment today the same as his time-consistent counterpart. As a result, there are two

driving forces that incentivise the agent to use the Linear Search Policy: one is that the state is

sufficiently small and thus the benefit of Linear Search becomes higher, and the other one is that

the agent is sufficiently present-biased and thus perceives the cost of Linear Search to be smaller.

The main tradeoff is that when the agent is very present-biased, that is, she has a smaller present-

biased parameter β, she perceives the Linear Search Policy to be attractive in bigger states, while

for the agent who is less present-biased, she only perceives the Linear Search Policy to be attractive

in smaller states.

7 Winner takes all

In the previous section, I have discussed a single agent’s decision problem. There is only one agent

learning the unknown parameter. In this section, I consider a game where the players compete to

learn the unknown parameter. At each time t, the player i ∈ {1, 2, . . . , I} is active with probability

pi where
∑I

i pi = 1 and pi ∈ (0, 1) for all i. There is only one active player at each time t. The

active player i can use the Linear Search Policy, the Binary Search Policy, or any (m,n) ∈ F†

policy in state N . At time t, if the active player learns the unknown parameter, then, she gets the

reward associated with learning and the game ends. All other players get no reward. If the active

player does not learn the unknown parameter, the game enters next period. Assume the lifetime

utility of the players is as in eq. (2) and all the players have the same discount parameter δ.

If all the players use the Linear Search Strategy,then, the outcome of the game, that is, the

distribution of the learning time, is the same as the case with one player learning alone using the
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Linear Search Strategy. The players’ payoffs are different because now they only have the chance

to get the reward associated with learning when they are active. One could imagine that now

the players have less incentives to use the Binary Search Strategy because it gives the player zero

probability of getting the reward in state greater than two. In addition, using the Binary Search

Strategy increases the other players’ probabilities of getting the reward by shrinking the parameter

set. It is then interesting to check when it is an equilibrium such that all the players use the Linear

Search Strategy I show that this equilibrium exists when the discount parameter δ is not too close

to one.

Proposition 5. There exists an upperbound δ̊ = min 1
1+pi

such that if δ ≤ δ̊, there exists an

equilibrium where all the players use the Linear Search Strategy.

Suppose all the players use the Linear Search Strategy and then I check whether there exists

any deviation in state N that gives the player a higher payoff. First notice that, when δ ≤ 1
2 , the

player does not want to deviate to other policies in any state. This is because when players are

competing to get the reward associated with learning, the players have stronger incentives to use

the Linear Search Strategy. If it is optimal for the player to use the Linear Search Strategy when

she is learning alone, it is still optimal for her to use the Linear Search Strategy when competing

with other players. When δ > 1
2 , the player faces a tradeoff where the Linear Search Policy gives

the player the probability of getting the immediate payoff, while using other policies reduces the

future state and increases her payoff when she is active again in the future. Which effect dominates

depends on the player’s discount parameter and the probability that she is active in each state. If

the player is active with a high probability, say, pi is close to one, then, the Linear Search Strategy

best responses to other players using the Linear Search Strategy only when δ is close to 1
2 . If the

player is active with a probability close to zero, then, the Linear Search Strategy best responses to

other players using the Linear Search Strategy even when δ is close to one. If the best response of

the most active player (i.e. the player with the highest probability of being active) to the Linear

Search Strategy is the Linear Search Strategy, then, it is an equilibrium where all the players use

the Linear Search Strategy.

When pi is smaller than one for all i, the upperbound δ̊ is greater than a half. This shows

that the sufficiently patient players (whose optimal strategy is the Binary Search Strategy when

learning alone) can switch to the Linear Search Strategy when competing with others. This leads

to an inefficient outcome because it takes longer to learn the parameter in expectation when the

players use the Linear Search Strategy. This inefficiency prevails for a larger range of the discount

parameter when the players are active with equal probabilities. In addition, if the players are active

with equal probabilities, increasing the number of players intensifies the inefficiency. That is, all

the players using the Linear Search Strategy is an equilibrium for a larger range of the discount

parameter. Suppose there are two players who are active in each state with probability 0.9 and 0.1

respectively. Then, the upperbound δ̊ is 0.53. Thus, both players using the Linear Search Strategy

is an equilibrium when the discount parameter δ is weakly smaller than 0.53. If both players are

active in each state with probability a half, then, the upperbound δ̊ is 0.67. In this case, both

players using the Linear Search Strategy is an equilibrium when the discount parameter δ is weakly

smaller than 0.67. When the players are active with equal probability, both players using the Linear
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Search Strategy is an equilibrium for a greater range of the discount parameter. When there are I

players and all the players are active with equal probability in each state, we have pi =
1
I . Since

the upperbound δ̊ = I
I+1 increases in I, all the players using the Linear Search Strategy is an

equilibrium for a larger discount parameter set when I increases. Increasing the number of players

hence intensifies the inefficiency.

A Appendix

A.1 Search with a fixed cost

In this section, the agent does not discount future payoffs with a discount parameter. Instead, she

pays a fixed cost c > 0 for each search if she does not learn the true parameter. As mentioned in

Section 3, the agent’s preference is time risk neutral. The agent’s optimal strategy is the Binary

Search Strategy as long as the fixed cost c is bounded. Otherwise, the agent does not search. The

main intuition is that since the agent has to pay a fixed cost c for each search, the agent’s only

incentive is to learn with the least number of searches. The Binary Search Strategy satisfies this

requirement. However, since the agent only gets a reward of one associated with learning, she is thus

not willing to search when the fixed cost c is too high. Let N̄ denote the initial state, which is the

cardinality of the parameter set Θ. Let c̄(N̄) ≡ N̄
(2N̄−2⌊log2 N̄⌋+1)(⌈log2 N̄⌉−1)+(2⌊log2 N̄⌋+1−N̄)(⌊log2 N̄⌋−1)

.

Proposition 6. Given any initial state N̄ , if the fixed cost c ≤ c̄(N̄), the agent searches and the

optimal strategy is the Binary Search Strategy. Otherwise, the agent does not search. The Linear

Search Strategy is always sub-optimal.

The idea of the proof is the same as in the benchmark case: compare the lifetime utility of the

Binary (Linear, resp) Search Strategy and the lifetime utility of the Binary (Linear, resp) Search

Deviating Strategies. There is always a Linear Search Deviating Strategy that gives a higher lifetime

utility than the Linear Search Strategy, and no Binary Search Deviating Strategy gives a higher

lifetime utility than the Binary Search Strategy.

A.2 Relax the uniform prior assumption

Note that the agent’s prior belief is f0 = (f0(θ))θ∈Θ with f0(θ) ∈ (0, 1) for ∀θ ∈ Θ. In the previous

discussion, f0 is assumed to be uniform. That is, f0(θ) =
1
N̄

for ∀θ ∈ Θ, where N̄ is the cardinality

of the parameter set Θ. In this section, I assume that the agent believes that θ1, the first element

in the parameter set, is most likely to be the true parameter, whereas all other parameters in the

parameter set are equally likely. That is f(θ1) = f1, and f(θ) = 1−f1
N−1 for θ ∈ Θ \ {θ1}. I refer to

this distribution as a pseudo-uniform distribution with a peak of f1. To keep the model simple, I

consider the preference in the benchmark case: expected utility with exponential discounting. In

addition, I make the following assumption.

Assumption 1. The probability attached to the element θ1 is not smaller than a half, which is

f1 ≥ 1
2 .
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This assumption guarantees that any revised belief of the agent is either a uniform distribution

or a distribution with a peak. If this assumption is violated, the revised belief may not describe the

fact that the agent believes the first element is most likely to be the true parameter, but rather

the first element is least likely to be the true parameter. This assumption allows me to retain the

simplification of the agent’s choice in each state. In the previous discussion, the feasible set of the

choice in state N is denoted by F = {(m,n)|m+n = N,m, n ∈ Z+∩[1, N ]}. In the benchmark case,

due to the symmetry of the uniform distribution, assuming m ≤ n is without loss of generality. In

this section, with the assumption that f1 ≥ 1
2 , choosing m > N

2 is always sub-optimal. For example,

if N is even, choosing m = N
2 + 1 is dominated by choosing m

′
= N

2 − 1. The simplification that

m ≤ n is still without loss of generality.

The main question of interest in this section is to find the conditions under which the Focal

Point Search Strategy (defined below) is optimal.

Definition 4. The Focal Point Search Strategy is a strategy such that (1) in state N , if the belief

of the agent has a peak, then the agent chooses (m,n) = (1, N − 1), (2) in state N , if the belief

of the agent is uniform, then the agent chooses the Linear Search Policy if δ ≤ 0.5 and the Binary

Search Policy if δ > 0.5.

When δ ≤ 0.5, the Focal Point Search Strategy coincides with the Linear Search Strategy.

When δ > 0.5, the Focal Point Search Strategy can be considered as the agent uses the Linear

Search Policy when the belief is not uniform, and then switch to the Binary Search Strategy when

the belief becomes uniform. The agent with δ > 0.5 is only willing to use the Linear Search Policy

under one situation: when she is quite certain that the first element in the parameter set is the true

value of the parameter. Hence, asking the question that under what conditions the Focal Point

Search Strategy is optimal, is equivalent to asking how certain the agent has to be so that she is

willing to test the first element in the parameter set before doing anything else.

Proposition 7. When δ ≤ 0.5, the Focal Point Search Strategy is optimal.

The intuition is that when the agent uses the Linear Search Strategy, the agent’s utility is a

convex combination of the payoff of learning the unknown parameter and the discounted contin-

uation value. The continuation value is the same under uniform prior and under the prior with

a peak, and it is smaller than the payoff of learning the unknown parameter. When the agent’s

prior belief is the distribution with a peak, the agent puts higher weight to the payoff of learning

the unknown parameter today. Therefore, if it is optimal for the agent to use the Linear Search

Strategy when the prior is uniform, it is also optimal for the agent to use the Focal Point Search

Strategy when the prior is the distribution with a peak.

Proposition 8. If δ ∈ (0.5, f1], then the Focal Point Search Strategy is optimal.

This proposition says that given the value of f1, when the agent is not too patient, that is, when

δ ≤ f1, the Focal Point Search Strategy is optimal. The other way to interpret this proposition is

that given the value of the agent’s discount parameter δ > 1
2 , if the agent is sufficiently certain that

the first element is the true value of the parameter, that is, f1 ≥ δ, then, he/she is willing to use
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the Linear Search Policy to check the first element in the parameter set, and then uses the Binary

Search Strategy if the first element is not the true value of the parameter.

This proposition provides a sufficient condition under which the Focal Point Search Strategy

is optimal. It does not characterise the optimal strategy when δ > f1. Even with this seemingly

simple prior assumption, it is still hard to get the characterisation of the optimal strategy for any

given value of δ and f1. However, the optimal strategy under some extreme cases may be helpful to

understand the agent’s behaviour. When the agent has δ = 1, she is indifferent between the Linear

Search Strategy, the Binary Search Strategy and the Focal Point Search Strategy because all the

future payoffs are perceived to be the same. Whenever and however the agent learns the unknown

parameter, he/she gets a payoff of one. This shows that increasing δ does not monotonically increase

the agent’s incentive to use the Binary Search Strategy, otherwise, when δ takes the highest value,

the optimal strategy must be unique: the Binary Search Strategy. I may make the conjecture that

when δ is close to one, it might be optimal for the agent to use the Focal Point Search Strategy.

The intuition is that when the agent is very patient, the agent does not mind using one period of

Linear Search Policy to test the most likely element. But, this is just a conjecture, there is yet no

proof to support this conjecture.

B Proofs

B.1 The proof of Lemma 1

The value associated with the Linear Search Strategy is

V L(N) =
1

N
+ δ

N − 1

N
V L(N − 1)

. . .

=
1

N
+ δ

1

N
+ δ2

1

N
+ · · ·+ δN−2 2

N
V L(2)

=
1

N

(N−2∑
i=0

δi + δN−2
)
=

1

N

(1− δN−1

1− δ
+ δN−2

)
To derive the value associated with the Binary Search Strategy, I use mathematical induction.

To simplify the notation, I rewrite the value in the following way

NV B(N) = πNδτ
N
1 + (N − πN )δτ

N
2 . (9)

I also establish the properties of πN and τN .

Remark 1. The following equations hold.

π2N = 2πN

τ2Ni = τNi + 1 for i = 1, 2

I first show that if eq. (9) is the value function in state N associated with the Binary Search

Strategy, then we have 2NV B(2N), the value function in state 2N associated with the Binary
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Search Strategy, following the same functional form as eq. (9). The calculation is as follows.

2NV B(2N) = δ
{
NV B(N) +NV B(N)

}
= 2πNδτ

N
1 +1 + (2N − 2πN )δτ

N
2 +1

= π2Nδτ
2N
1 + (2N − π2N )δτ

2N
2

Before showing the next part of the proof, I establish some properties of πN and τN . Let

K ∈ Z+.

Remark 2. If N = 2K , the following equations hold.

π2N+1 = πN + πN+1 = πN+1

τ2N+1
1 = τN+1

1 + 1 = τN1 + 2

τ2N+1
2 = τN+1

2 + 1 = τN2 + 1

If N ∈ [2K + 1, 2K+1 − 2], the following equations hold.

π2N+1 = πN + πN+1

τ2N+1
i = τNi + 1 = τN+1

i + 1 for i = 1, 2

If N = 2K+1 − 1, the following equations hold.

N − πN = (2N + 1)− π2N+1

πN = N − 1; π2N+1 = 2N ; πN+1 = 0

τN1 = τN+1
1 = τN+1

2

τ2N+1
1 = τN1 + 1 = τN+1

1 + 1

τ2N+1
2 = τN2 + 1 = τN+1

2

Next, I show that If the value function in state N associated with the Binary Search Strategy

follows the functional form eq. (9), and the value function in state N + 1 associated with the

Binary Search Strategy follows the functional form eq. (9), then, the value function in state 2N +

1 associated with the Binary Search Strategy follows the same function form as eq. (9). The

calculation is as follows.

(2N + 1)V B(2N + 1) = δ
{
NV B(N) + (N + 1)V B(N + 1)

}
= πNδτ

N
1 +1 + (N − πN )δτ

N
2 +1 + πN+1δτ

N+1
1 +1 + (N + 1− πN+1)δτ

N+1
2 +1
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If N = 2K , then

(2N + 1)V B(2N + 1) = Nδτ
N
2 +1 + πN+1δτ

N+1
1 +1 + (N + 1− πN+1)δτ

N+1
2 +1

= Nδτ
2N+1
2 + π2N+1δτ

2N+1
1 + (N + 1− π2N+1)δτ

2N+1
2

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (9). If N ∈ [2K + 1, 2K+1 − 2], then

(2N + 1)V B(2N + 1) = πNδτ
2N+1
1 + (N − πN )δτ

2N+1
2 + πN+1δτ

2N+1
1 + (N + 1− πN+1)δτ

2N+1
2

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (9). If N = 2K+1 − 1, then

(2N + 1)V B(2N + 1) = πNδτ
N
1 +1 + (N − πN )δτ

N
2 +1 + (N + 1)δτ

N+1
2 +1

= (N − 1)δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2 + (N + 1)δτ

2N+1
1

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (9).

Lastly, I show that when N ∈ {3, 4, 5}, the value function in state N associated with Binary

Search follows the same functional form as eq. (9). If N = 3, 3V B(3) = 1 + 2δ follows eq. (9). If

N = 4, 4V B(4) = 4δ follows eq. (9). If N = 5, 5V B(5) = 3δ + 2δ2 follows eq. (9).

B.2 The proof of Lemma 2

To show the properties of WL(N), It is without loss of generality to treat N as a continuous variable

and then compute the first and second order derivatives. The first order derivative of WL(N) is

(log δ)1−2δ
1−δ δ

N−2, and the second order derivative of WL(N) is (log2 δ)1−2δ
1−δ δ

N−2. When δ < 1
2 , the

first order derivative of WL(N) is negative and the second order derivative is positive. When δ > 1
2 ,

the first order derivative of WL(N) is positive and the second order derivative is negative. When

δ = 1
2 , W

L(N) is independent of N .

The first and second order difference of WB(N) is summarised in the following lemma. Let

△WB(N) := WB(N)−WB(N − 1) and △2WB(N) := △WB(N)−△WB(N − 1).

Lemma 6. If N = 2Y , then, △WB(N) = δY−2(2δ − 1) for all Y ∈ Z+.

If 2Y < N < 2Y+1, then, △WB(N) = δY−1(2δ − 1) for all Y ∈ Z+.

If N = 2Y and 2Y−1 < N − 1 < 2Y , then, △2WB(N) = 0.

If 2Y < N < 2Y+1 and 2Y < N − 1 < 2Y+1, then, △2WB(N) = 0.

If 2Y < N < 2Y+1 and N − 1 = 2Y , then, △2WB(N) = (2δ − 1)(δ − 1)δY−2.

Lemma 6 is derived directly from calculating the first difference of the function WB(·). When

δ > 0.5 (δ < 0.5), The first-order difference of WB(·) is positive (negative), and the second-order

difference of WB(·) is non-positive (non-negative). When δ = 0.5, WB(N) is independent of N .
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B.3 The proof of Proposition 1

To show that the Linear Search Strategy is optimal, I show that there is no Linear Search Deviating

Strategy give the agent a higher payoff than that of the Linear Search Strategy. In state N , the

value associated with the Linear Search Deviating Strategy is

V D(N) = δ

{
m

N
V L(m) +

n

N
V L(n)

}
= δ

[
m

N

1

m

(1− δm−1

1− δ
+ δm−2

)
+

n

N

1

n

(1− δn−1

1− δ
+ δn−2

)]
= V L(N)

2δ + (1− 2δ)(δm−1 + δn−1)

2δ + (1− 2δ)(1 + δN−2)

Let M = 2δ+(1−2δ)(δm−1+δn−1)
2δ+(1−2δ)(1+δN−2)

. I show that M ≤ 1 when δ ≤ 0.5 and M > 1 when δ > 0.5. Notice

that 2δ + (1− 2δ)(δm−1 + δn−1) > 0 and 2δ + (1− 2δ)(1 + δN−2) > 0. I calculate the differences

of the denominator and numerator of M .[
2δ + (1− 2δ)(δm−1 + δn−1)

]
−

[
2δ + (1− 2δ)(1 + δN−2)

]
= (1− 2δ)

[
(δm−1 + δn−1)− (1 + δm+n−2)

]
Notice that (δm−1+δn−1)−(1+δm+n−2) = −(1−δn−1)(1−δm−1) < 0 Therefore, 2δ+(1−2δ)(δm−1+

δn−1) > 2δ+(1−2δ)(1+δN−2) when δ > 0.5 and 2δ+(1−2δ)(δm−1+δn−1) ≤ 2δ+(1−2δ)(1+δN−2)

when δ ≤ 0.5. Therefore, M ≤ 1 when δ ≤ 0.5 and M > 1 when δ > 0.5. Thus, V L(N) ≥ V D(N)

if δ ≤ 0.5. As a result, a Linear Search Deviating Strategy that gives the agent a higher payoff than

the Linear Search Strategy does not exist.

To show that the Binary Search Strategy is optimal, I first show that the Binary Search Devi-

ating Strategy such that the (m,n) ∈ F† policy in state N is used gives the agent a lower payoff

than the Binary Search Strategy. Since I assume that m ≤ n, the Binary Search Policy in state N

by definition maximises m and minimises n. To show that deviating to other choices (m,n) ∈ F†

is not profitable, I show that

δ
{
mV B(m) + nV B(n)

}
≥ δ

{
(m− 1)V B(m− 1) + (n+ 1)V B(n+ 1)

}
if δ ≥ 0.5.

Rearrange the inequality, it is equivalent to show that

△WB(m) ≥ △WB(n+ 1). (10)

According to Lemma 6, I consider four cases based on the values of m and n.

Case 1: 2Y < m < 2Y+1 and 2K − 1 < n < 2K+1 − 1. Since m ≤ n, log2m ≤ log2 n. Then,

⌊log2m⌋ ≤ ⌊log2 n⌋, which is Y ≤ K. Therefore,

δY−1(2δ − 1) ≥ δK−1(2δ − 1).
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The inequality (10) holds if δ ≥ 0.5.

Case 2: m = 2Y and n = 2K − 1. Since m ≤ n, we have Y ≤ K − 1. Thus Y − 2 < K − 2

Therefore,

δY−2(2δ − 1) > δK−2(2δ − 1).

The inequality (10) holds if δ ≥ 0.5.

Case 3: 2Y < m < 2Y+1 and n = 2K − 1. Since m ≤ n, we have Y ≤ K − 1. Therefore

δY−1(2δ − 1) ≥ δK−2(2δ − 1).

The inequality (10) holds if δ ≥ 0.5.

Case 4: m = 2Y and 2K − 1 < n < 2K+1 − 1. Since m ≤ n, we have Y ≤ K. Therefore,

δY−2(2δ − 1) > δK−1(2δ − 1).

The inequality (10) holds if δ ≥ 0.5.

Next I show that deviating to Linear Search in state N is not profitable. Before showing the

result, I introduce the following lemma.

Lemma 7. If δ ∈ [0.5, 1), WB(N)− δWB(N − 1) weakly increases in N .

This lemma can be shown given Lemma 6

To show that deviating to Linear Search in state N is not profitable, I show that

1

N
+

N − 1

N
δV B(N − 1) ≤ V B(N),

which is equivalent to

1 ≤ NV B(N)− δ(N − 1)V B(N − 1).

Given Lemma 7, the minimum of W (N) is 1. Since W (N) is increasing, W (N) ≥ 1. Therefore,

deviating to Linear Search in state N is not profitable if δ ≥ 0.5.

To summarise, there is no Binary Search Deviating strategy that gives the agent a higher payoff

than the Binary Search Strategy if δ ≥ 0.5.

B.4 The proof of Lemma 4

In this proof, I find ϕ(·) and u(·) such that ϕ
(
δτu(x)

)
= ρτx. Let z = δτ and u(x) = y. Then,

ϕ
(
δτu(x)

)
= ϕ(zy) = z

log ρ
log δ u−1(y).

Let t = zy. Then,

ϕ(t) = u−1(y)

(
1

y

) log ρ
log δ

t
log ρ
log δ := at

log ρ
log δ
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where a := u−1(y)
(
1
y

) log ρ
log δ

. Given the functional form of ϕ(·), next, I find the functional form of

u(·) such that

a [δτu (x)]
log ρ
log δ = ρτx.

Then, we have u(x) =
(
x
a

) log δ
log ρ . Let c := log ρ

log δ . Then, ϕ(x) = axc and u(x) =
(
x
a

) 1
c .

B.5 The proof of Proposition 3

Let T (W)(N) = max(m,n)∈F ζ
(
m
NW(m)+ n

NW(n)
)
and B(Z+) be a space of the bounded functions

W: Z+ → R. The operator T (W) is a contraction mapping maps from B(Z+) to B(Z+). The fixed

point can be derived based on the discussion in the benchmark case. If ζ ∈ (0, ζ̄), the fixed point

of the mapping is W(N) = V L(N). The corresponding strategy is the Linear Search Strategy.

If ζ ∈ (ζ̄, 1), the fixed point of the mapping is W(N) = V B(N). The corresponding strategy is

the Binary Search Strategy. Since α ∈ (0, 1), the value function E(N) is maximised when W(N)

is maximised. Therefore, if ζ ∈ (0, ζ̄), the optimal strategy to achieve the maximum E(N) is

the Linear Search Strategy. If ζ ∈ (ζ̄, 1), the optimal strategy to achieve the maximum E(N) is

the Binary Search Strategy. Since ζ = δ
α
ρ , given any (α, ρ) pair, there exists a unique threshold

δ̃ = (ζ̄)
ρ
α such that if δ > δ̃, the Binary Search Strategy is the optimal strategy. If δ < δ̃, the Linear

Search Strategy is the optimal strategy.

B.6 The proof of Proposition 4

Before showing the proofs of the propositions, I first introduce some definitions that will be used

in the proofs.

Given a strategy, the agent’s state-N self’s value function associated with that strategy is related

to the value functions of the time-consistent agent. For example, the agent’s state-N self’s value

associated with the Linear Search Strategy UL(N) is

UL(N) =
1

N
+ βδ

N − 1

N
V L(N − 1),

where V L(·) is the value associated with the Linear Search Strategy in the benchmark case (see

Lemma 1). This is because the present-biased agent perceives all the future payments to be less

important than the payment at present. This idea is formally characterised in the following lemma.

Let S be a strategy and let US(N) be the agent’s state-N self’s value function associated with this

strategy. Let V S(·) be the time-consistent agent’s value function associated with the strategy S,
and let (mS , nS) denote the strategy S induced policy in state N .

Lemma 8. The present-biased agent’s state-N self ’s value function associated with the strategy S
is

US(N) =

 1
N + βδN−1

N V S(N − 1) if (mS , nS) = (1, N − 1),

βδ
{
mS

N V S(mS) + nS

M V S(nS)
}

otherwise.
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This lemma can be used to check the optimality of the strategy S induced policy (mS , nS) for

the agent’s state-N self, and hence the optimality of the strategy S for the present-biased agent.

Definition 5. The strategy S induced policy (mS , nS) in state N is optimal for the agent’s state-N

self if it is not optimal for the agent’s state-N self to deviate to other policies given that he will

follow the strategy S in the future.

Then, the optimality of the strategy S is defined in the following way.

Definition 6. The strategy S is optimal for the present-biased agent, if, for all N , the strategy S
induced policy (mS , nS) in state N is optimal for the agent’s state-N self.

The optimality of a strategy can be shown using the same one-step deviation principle as in the

benchmark case. The difference is that in the benchmark case, since the agent is time-consistent,

it can be considered as the agent’s state-N selves are the same for all N . To show the optimality

of the Linear Search Strategy (Binary Search Strategy, resp), it is thus sufficient to show that

no Linear Search Deviating Strategy (Binary Search Deviating Strategy, resp) is beneficial in an

arbitrary state N . However, when the agent is present-biased, the agent’s preferences are different

in each state N , to show the optimality of a strategy, we need to check that for all N , the agent’s

state-N self does not want to deviate. This idea coincides with the backward induction. The agent’s

state-N self chooses the optimal policy in state N given that for all m < N , his state-m selves use

the optimal policies in state m.

I first show the first bullet point of Proposition 4. I ask the question: if the present-biased agent

believes that his future selves will use the Linear Search Policy, what is the smallest state N such

that the agent’s state-N self finds it beneficial to use other policies in state N? If the state N does

not exist, then I have shown that the first bullet point of Proposition 4 is true. This proof uses the

idea of backward induction. Since the agent does not make effective decisions in state N ≤ 3, where

the Linear Search Policy the Binary Search Policy coincide, it can be considered as the agent uses

Linear Search Policy in state N ≤ 3. By backward induction, the optimal policy in state 4 gives the

agent’s state-4 self the highest value function given that the agent’s future selves will use the Linear

Search Policy. In state 4, given that the agent’s future selves will use the Linear Search Policy,

the agent’s state-4 self’s value function associated with Linear Search is UL(4) = 1
4 + δβ 3

4V
L(3),

where V L(·) is the value function associated with the Linear Search Strategy when the agent is

time consistent (see Lemma 1). If the agent’s state-4 self uses some other policies, which can only

be Binary Search in state 4, given the agent’s future selves use the Linear Search Policy, then

the value function UD(·) associated with this deviation is UD(4) = βδV L(2). By deviating to the

Binary Search Policy in state 4, the agent gives up the payment of 1
4 at present, and increases

the discounted continuation value by δ[V L(2) − 3
4V

L(3)]. Proposition 1 implies that when the

agent is time consistent and has the discount parameter δ < δ̄, the increasing of the discounted

continuation value is smaller than the payment the agent gives up today, and the Linear Search

Policy is hence optimal in state 4. When the agent is present-biased, he perceives the increasing of

the discounted continuation value to be even smaller than the real discounted continuation value.

The Linear Search Policy is thus also optimal in state 4 for the present-biased agent’s state-4 self.
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This argument can be generalised to the present-biased agent’s state-N self for all N . The Linear

Search Strategy is thus optimal for the present-biased agent with δ < δ̄ and β ∈ (0, 1).

To find the optimal strategy of the present-biased agent with δ > δ̄, I ask the following two

questions:

• If the present-biased agent’s future selves will use the Binary Search Policy, what is the

smallest state N such that the agent’s state-N self finds it beneficial to use other policies in

state N?

• If the present-biased agent’s future selves will use the Linear Search Policy, what is the

smallest state N such that the agent’s state-N self finds it beneficial to use other policies in

state N?

Answering the first question is useful to show the second bullet point of Proposition 4, while

answering the second question is useful to show the third bullet point. If the smallest state N in

the first question does not exist, then the Binary Search Strategy is optimal.

The proof uses the idea of backward induction. Since the agent does not make any effective

decisions in state N ≤ 3, and the Binary Search Policy and the Linear Search Policy coincide,

it can be considered as the agent uses Binary Search Policy in state N ≤ 3. The optimal policy

in state 4 gives the agent’s state-4 self the highest value function given that the agent’s future

selves will use the Binary Search Policy. In state 4, given that the agent’s future selves will use

the Binary Search Policy, the agent’s state-4 self’s value function associated with Binary Search is

UB(4) = βδV L(2) = βV B(4), where V B(·) is the value function associated with the Binary Search

Strategy when the agent is time consistent (see Lemma 1). Proposition 1 implies that deviating to

any policy that gives the agent zero payment today is not beneficial. Therefore, only the Linear

Search Policy should be considered. If the agent’s state-4 self believes that his future selves will

use the Binary Search Policy, and he uses Linear Search Policy in state 4, the value function is

UD(4) = 1
4 + βδ 3

4V
B(3). It can be regarded as the agent asks himself this question: in comparison

with always using Binary Search Policy, is it beneficial for me to postpone the Binary Search to

tomorrow and use Linear Search today? The benefit of using the Linear Search Policy today is the

positive expected payment 1
4 , and the cost of using the Linear Search Policy is from the delay of

Binary Search, which is V B(4) − δ 3
4V

B(3). Since this cost is future cost, the present-biased agent

perceives the cost as β[V B(4)−δ 3
4V

B(3)]. In state 4, delaying the Binary Search to tomorrow is not

beneficial when the agent’s state-4 self’s perceived cost is greater than the benefit, that is, when

β > β̄4, where β̄4 =
1
4

V B(4)−δ 3
4
V B(3)

is the ratio of the benefit to the cost of delaying the Binary

Search Policy and use the Linear Search Policy in state 4 instead. The discussion above shows that

when the present-biased agent has δ > δ̄ and β > β̄4, the Binary Search Policy is optimal in state

4 for the agent’s state-4 self. Using the idea of backward induction, the Binary Search Policy can

be shown to be optimal in state 5 for the agent’s state-5 self if β > β̄5. The Binary Search Policy

is thus optimal for the present-biased agent in all the states up to N if β > max{β̄m}m={4,5,...,N},

where β̄m :=
1
m

V B(m)−δm−1
m

V B(m−1)
is the ratio of the benefit to the cost of using the Linear Search

Policy in state m given that the agent’s future selves will use the Binary Search Policy. The cost

V B(m)− δm−1
m V B(m− 1) is increasing in m because the value function V B(·) is concave, and the
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benefit 1
m is decreasing inm. The value of β̄m is thus decreasing inm. Therefore, if β > β̄4, then the

value of β is greater than β̄N for all N > 4. The intuition is that delaying the Binary Search Policy

to tomorrow is the most beneficial for the present-biased agent’s state-4 self. If the present-biased

agent’s state-4 self finds it optimal to use the Binary Search Policy, then all the present-biased

agent’s selves will find it optimal to use the Binary Search Policy. When the present-biased agent

is not too present-biased, that is, when β is big enough, the present-biased agent has the same

optimal strategy as the time-consistent agent.

In state N , if the agent’s future selves all use the Linear Search Policy, and the agent’s state-N

self uses the (m,n) ∈ F† policy, the highest payoff from these policies is

βP (N) ≡ β max
{m,n}∈F†

δ

{
m

N
V L(m) +

n

N
V L(n)

}
where V L(·) is value associated with the Linear Search Strategy (see Lemma 1). When δ > δ̄, it has

been shown that the maximum value is achieved at the Binary Search Policy in state N . Following

the backward induction method, consider the agent’s state-4 self. Since Linear Search and Binary

Search coincide in states smaller than 4, it can be considered as the agent’s future selves use Linear

Search Policy in each future states. If the agent uses the Linear Search Policy in state 4, then the

expected payoff is 1
4 + βδ 3

4V
L(3). If the agent uses the Binary Search Policy in state 4, then the

expected payoff is βP (4). Then, given that the agent’s future selves all use the Linear Search Policy,

the agent’s state-4 self uses the Binary Search Policy if β ≥ β̃4 where β̃4 ≡
1
4

P (4)−δ 3
4
V L(3)

is the ratio

of the benefit to the cost of using the Linear Search Policy in state 4. Let β̃N ≡
1
N

P (N)−δN−1
N

V L(N)
be

the ratio of the benefit to the cost of using the Linear Search Policy in state N . Note that β̃4 = β̄4

because Linear Search and Binary Search coincide in states smaller than 4.

When β < β̃4, the agent uses the Linear Search Policy in state 4 given that his future selves

also use Linear Search Policy. Then, consider the optimal policy in state 5 given that the agent’s

all future selves use the Linear Search Policy. Following the same calculation as in state 4, the

agent uses the Binary Search Policy if β ≥ β̃5, and uses the Linear Search Policy if β < β̃5.

Lemma 9. The ratio of the benefit to the cost of using the Linear Search Policy in state N given

that the agent’s future selves all use the Linear Search Policy β̃N is decreasing in N .

This is because the benefit of using the Linear Search Policy in state N is decreasing in N , and

due to the concavity of the function V L(·), the cost of using the Linear Search Policy is increasing

in N . As a result, β̃N is decreasing in N .

Given this lemma, in state 5, it can be concluded that if the agent has the present-biased

parameter β ∈ [β̃5, β̃4), it is optimal for him to use the Binary Search Policy in state 5, and to use

the Linear Search Policy in all future states. For β < β̃5, I can keep discussing the agent’s policy

in state 6 using the same approach. Because of the decreasing property of β̃N , it will be the case

that if the agent has the present-biased parameter β ∈ [β̃N , β̃N−1), it is optimal for him to use the

Binary Search Policy in state N , and to use the Linear Search Policy in all future states.

35



B.7 The proof of Proposition 5

Suppose all the players use the Linear Search Strategy. In state N , prior to knowing whether she

is active or not, if player i uses the Linear Search Strategy when she is active, her value is

V L
i (N) = pi

{
1

N
+ δ

N − 1

N
V L
i (N − 1)

}
+ (1− pi)

{
δ
N − 1

N
V L
i (N − 1)

}
.

Given the initial condition V L
i (2) = pi, it can be computed that

V L
i (N) =

1

N
pi

[
1− δN−1

1− δ
+ δN−2

]
.

If player i uses the (m,n) ∈ F† policy in state N , and uses the Linear Search Policy in all other

states, prior to knowing whether she is active or not, her value is

V D
i (N) = pi

{
δ
m

N
V L
i (m) + δ

n

N
V L
i (n)

}
+ (1− pi)

{
δ
N − 1

N
V L
i (N − 1)

}
.

Next, I show that when δ ≤ 1
1+pi

, we have V D
i (N) ≤ V L

i (N). That is, given that all other player

uses the Linear Search Strategy, it is optimal for player i to use the Linear Search Strategy (if she

is active). Let WL
i (N) := NV L

i (N) and WD
i (N) := NV D

i (N). To show that V D
i (N) ≤ V L

i (N) is

equivalent to show that WD
i (N) ≤ WL

i (N). We have

WD
i (N)−WL

i (N) = δWL
i (m) + δWL

i (n)− δWL
i (N − 1)− 1.

If δ > 1
2 , W

L
i (m) +WL

i (n) is maximised at m = N
2 . If δ ≤ 1

2 , W
L
i (m) +WL

i (n) is maximised at

m = 2. When δ ≤ 1
2 ,

WD
i (N)−WL

i (N) < δWL
i (1) + δWL

i (N − 1)− δWL
i (N − 1)− 1

= 2δpi ≤ pi < 1.

Therefore, when δ ≤ 1
2 , there exists an equilibrium where all the players use the Linear Search

Strategy. When δ > 1
2 ,

WD
i (N)−WL

i (N) ≤ δ2WL
i (

N

2
)− δWL

i (N − 1)− 1

=
δ + (2δ − 1)

(
δN−2 − 2δ

N
2
−1

)
1− δ

pi − 1

<
δ

1− δ
pi − 1.

If δ < 1
1+pi

, we have WD
i (N)−WL

i (N) < 0. As a result, if 1
2 < δ < 1

1+pi
, given that all the players

use the Linear Search Strategy, it is optimal for player i to use the Linear Search Strategy.
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B.8 The proof of Proposition 6

In this proof, I first derive the lifetime utility associated with the Linear Search Strategy and the

Binary Search Strategy. Next, I show that there is always a Linear Search Deviating Strategy that

gives a higher lifetime utility than the Linear Search Strategy. The Linear Search Strategy is hence

always sub-optimal. Then, I show that no Binary Search Deviating Strategy gives a higher lifetime

utility than the Binary Search Strategy, and hence the Binary Search Strategy is optimal.

To derive the lifetime utility associated with the Linear Search Strategy, I first write down the

Bellman equation

SL(N) =
1

N
+

N − 1

N
(SL(N − 1)− c).

Iterate backwards and plug in the initial condition S(2) = 1, we have

SL(N) =
1

N
+

N − 1

N

(
1

N − 1
+

N − 2

N − 1

(
SL(N − 2)− c

)
− c

)
= 1− (N + 1)(N − 2)

2N
c

By using the Binary Search Strategy, the agent learns the state after ⌈log2(N)⌉ − 1 periods

with probability 2N−2⌊log2 N⌋+1

N and learns the state after ⌊log2(N)⌋ − 1 periods with probability
2⌊log2 N⌋+1−N

N . The lifetime utility associated with the Binary Search Strategy is hence

SB(N) =
2N − 2⌊log2 N⌋+1

N

(
1− (⌈log2(N)⌉ − 1)c

)
+

2⌊log2 N⌋+1 −N

N

(
1− (⌊log2(N)⌋ − 1)c

)
= 1− (2N − 2⌊log2 N⌋+1)(⌈log2N⌉ − 1) + (2⌊log2 N⌋+1 −N)(⌊log2N⌋ − 1)

N
c.

Next, I show that there is always a Linear Search Deviating Strategy that gives a higher lifetime

utility than the Linear Search Strategy if c > 0. The Linear Search Deviating Strategy is to choose

(m,n) ∈ F† in state N , and use the Linear Search Policy in all other states. Let SD(N) be the

lifetime utility associated with the Linear Search Deviating Strategy in state N , then

SD(N) =
m

N
SL(m) +

n

N
SL(n)− c

= 1− m2 + n2 +N − 4

2N
c

If N is even, SD(N) is maximised at m = N
2 , where

maxSD(N) = 1− N2 + 2N − 8

4N
c > SL(N)

if N > 2. If N is odd, SD(N) is maximised at m = N−1
2 , where

maxSD(N) = 1− N2 + 2N − 7

4N
c > SL(N)

if N > 3. Therefore, whenever the Binary Search Strategy and the Linear Search Strategy does
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not coincide, there is always a Linear Search Deviating Strategy that gives a higher lifetime utility

than the Linear Search Strategy if c > 0. Linear Search is hence sub-optimal.

Then, I show that no Binary Search Deviating Strategy gives a higher lifetime utility than the

Binary Search Strategy. I first derive the expression of mSB(m) − (m − 1)SB(m − 1), which will

be useful for the rest of the proof. I will show that one-step deviation to the Linear Search Policy

in state N is not profitable, and then I show that one-step deviation to (m,n) ∈ F† in state N

is not profitable. Lastly, I show that search happens in state N when the cost c is smaller than a

threshold c̄(N).

Let K ∈ Z+ and K ≥ 2 be a constant.

Lemma 10. If m = 2K ,

mSB(m)− (m− 1)SB(m− 1) = 1−Kc.

If m ∈ [2K + 1, 2K+1 − 1] ∩ Z+,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.

Proof. We have

mSB(m) = m− (2m− 2⌊log2 m⌋+1)(⌈log2m⌉ − 1) + (2⌊log2 m⌋+1 −m)(⌊log2m⌋ − 1)c.

Then, the difference is

mSB(m)− (m− 1)SB(m− 1) = 1−
[
m
(
2(⌈log2m⌉ − 1)− ⌊log2m⌋ − 1

)
− (m− 1)

(
2(⌈log2(m− 1)⌉ − 1)− ⌊log2(m− 1)⌋ − 1

)
− 2⌊log2 m⌋+1

(
⌈log2m⌉ − ⌊log2m⌋

)
+ 2⌊log2(m−1)⌋+1

(
⌈log2(m− 1)⌉ − ⌊log2(m− 1)⌋

)]
c

Case 1. First consider the case that m = 2K . In this case, ⌈log2m⌉ = ⌊log2m⌋ = ⌈log2(m− 1)⌉ =
K, and ⌊log2(m− 1)⌋ = K − 1. Then,

mSB(m)− (m− 1)SB(m− 1) = 1−Kc.

Case 2. Then consider the case that m = 2K + 1. In this case, ⌈log2m⌉ = K + 1, and ⌊log2m⌋ =
⌈log2(m− 1)⌉ = ⌊log2(m− 1)⌋ = K. Then,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.

Case 3. Finally, consider the case that m ∈ [2K + 2, 2K+1 − 1] ∩ Z+. In this case, ⌈log2m⌉ =

⌈log2(m− 1)⌉ = K + 1 = K + 1, and ⌊log2m⌋ = ⌊log2(m− 1)⌋ = K. Then,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.
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Next, I show that one-step deviation to the Linear Search Policy in state N is not profitable.

Let DL(N) be the lifetime utility in state N given that the agent uses the Binary Search Deviating

Strategy and chooses the Linear Search Policy in state N , We have

DL(N) =
1

N
+

N − 1

N

(
SB(N − 1)− c

)
.

To show that the one-step deviation is not profitable is equivalent to show NDL(N) < NSB(N),

which is equivalent to show 1− (N −1)c < NSB(N)− (N −1)SB(N −1). According to Lemma 10,

the inequality holds when N > 2.

Then, I show that one-step deviation to (m,n) ∈ F† in state N is not profitable. Let DP (N) be

the lifetime utility in state N if the agent uses the Binary Search Deviating Strategy and chooses

(m,n) ∈ F† in state N , then

DP (N) = max
(m,n)∈F†

{m
N

SB(m) +
n

N
SB(n)− c

}
If I can show that DP (N) = SB(N) when the agent chooses Binary Search in state N , then there

is no profitable Binary Search Deviating Strategy. To show this, I introduce the following corollary.

Corollary 1. For (m,n) ∈ F†, the following inequality holds.

mSB(m)− (m− 1)SB(m− 1) ≥ (n+ 1)SB(n+ 1)− nSB(n)

Proof. Given Lemma 10, I consider four cases. Let K,J ∈ Z+ and K,J ≥ 2 be two constants.

Case 1. First consider the case that m = 2K and n+1 = 2J . The left-hand side of the inequality is

1−Kc and the right-hand side of the inequality is 1−Jc. Since m ≤ n, we have K < J . Therefore,

the inequality holds with the strict inequality. Case 2. Next, consider the case that m = 2K and

n+1 ∈ [2J +1, 2J −1]. The left-hand side of the inequality is 1−Kc and the right-hand side of the

inequality is 1− (J + 1)c. Since m ≤ n, we have K < J . Therefore, the inequality holds with the

strict inequality. Case 3. Next, consider the case that m ∈ [2K + 1, 2K − 1] and n+ 1 = 2J . The

left-hand side of the inequality is 1− (K + 1)c and the right-hand side of the inequality is 1− Jc.

Since m ≤ n, we have m < n + 1 and hence 2K+1 < 2J + 1. Since m,n ∈ Z+, it must be that

K +1 ≤ J . Therefore, the inequality holds with the weak inequality. Case 4. Lastly, consider the

case that m ∈ [2K + 1, 2K − 1] and n+ 1 ∈ [2J + 1, 2J − 1]. The left-hand side of the inequality is

1− (K+1)c and the right-hand side of the inequality is 1− (J +1)c. Since m ≤ n, we have K ≤ J .

Therefore, the inequality holds with the weak inequality.

Given Corollary 1, the following inequality holds

mSB(m) + nSB(n) ≥ (m− 1)SB(m− 1) + (n+ 1)SB(n+ 1).

Therefore, DP (N) is achieved by using the Binary Search Policy in state N . Therefore, there is no

profitable Binary Search Deviating Strategy.
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Since the agent only searches when learning gives the agent a non-negative payoff. That is

V B(N) ≥ 0. Therefore, the fixed cost c has to be smaller than the threshold c̄(N) so that the agent

starts searching.

B.9 The proof of Proposition 8

This proof follows the following steps. I first write down the Bellman equation. Next, I compute

the value associated with the Focal Point Search Strategy. Then, I derive a sufficient condition

under which there is no one-step deviation strategy that gives the agent a higher payoff than the

Focal Point Search Strategy.

The Bellman equation consists of the payoff at the current period and the continuation value.

The agent’s revised belief determines the continuation value. If the prior belief is a distribution

with a peak, the revised belief at the next time can be one of the following three distributions:

a degenerated distribution, a uniform distribution, or a distribution with a peak with a different

support. The shape of the revised belief depends on the agent’s policy at that time. If the agent

uses the Linear Search Policy, the revised belief will be a degenerated distribution or a uniform

distribution. If the agent chooses (m,n) ∈ F†, the revised belief will be a uniform distribution or

a distribution with a peak with a different support. Since the degenerated revised belief means

that the agent learns the unknown parameter, the continuation value is hence zero. The positive

continuation value thus takes two different functional forms: one corresponding to the uniform

revised belief, and the other corresponding to the belief with a peak.

Let Vp(N) be the value function in state N when the belief of the agent is a distribution with

a peak of f1. Let Vu(N) be the value function in state N when the belief of the agent is a uniform

distribution. If the agent’s belief in state N is the distribution with a peak f1, the Bellman equation

in state N is

Vp(N) = max

{
f1 + (1− f1)δVu(N − 1), max

(m,n)∈F†
δ
{
µVp(m) + (1− µ)Vu(n)

}}
,

with the initial condition Vp(1) = 1
δ and µ = f1 + 1−f1

N−1 (m − 1). The first element is the value

associated with the Linear Search Policy in state N , and the second element without the max

operator is the value associated with (m,n) in state N . With the max operator, it is the highest

value the agent can get by choosing (m,n) ∈ F†.

Let V F
p (N) be the value associated with the Focal Point Search Strategy. Then,

V F
p (N) = f1 + (1− f1)δV

B(N − 1),

where V B(·) is the value function in the benchmark case associated with the Binary Search Strategy

(see Lemma 1). This is because if the agent uses the Focal Point Search Strategy and does not learn

the unknown parameter, the revised belief becomes the uniform distribution. Then the problem

becomes the one that has been discussed in the benchmark case. Since the discount parameter is

greater than a half, the corresponding value function is V B(·).
To check the optimality of the Focal Search Strategy, I derive a sufficient condition under which
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there is no one-step deviation strategy that gives the agent a higher payoff than the Focal Point

Search Strategy.

Definition 7. The Focal Point Search Deviating Strategy is an one-step deviation strategy such

that the agent chooses (m,N −m) ∈ F† in state N and uses the Focal Point Search Strategy in all

other states.

Let G(m) be the value associated with the Focal Point Search Deviating Strategy. Then,

G(m) = δ
{
µV F

p (m) + (1− µ)V B(N −m)
}
.

Plug in the value function associated with the Focal Point Search Strategy, we have

G(m) = δ
{
µ
(
f1 + (1− f1)δV

B(m− 1)
)
+ (1− µ)V B(N −m)

}
.

The functional form of V B(·) is known (see Lemma 1). Since m ≥ 2 and m ≤ N − m, the

upperbound of V B(m− 1) is V B(1), which is 1
δ , and the upperbound of V B(N −m) is V B(2) = 1.

Therefore,

G(m) ≤ δ
{
µ
(
f1 + (1− f1)δ

1

δ

)
+ (1− µ)

}
= δ.

Then, if δ ≤ f1, it is always true that G(m) ≤ V F
p (N). As a consequence, when δ ∈ (12 , f1], there is

no Focal Point Search Deviating Strategy that gives the agent a higher payoff than the Focal Point

Search Strategy. The Focal Point Search Strategy is hence optimal.
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